Do you want to publish a course? Click here

mmPose-NLP: A Natural Language Processing Approach to Precise Skeletal Pose Estimation using mmWave Radars

113   0   0.0 ( 0 )
 Added by Arindam Sengupta
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper we presented mmPose-NLP, a novel Natural Language Processing (NLP) inspired Sequence-to-Sequence (Seq2Seq) skeletal key-point estimator using millimeter-wave (mmWave) radar data. To the best of the authors knowledge, this is the first method to precisely estimate upto 25 skeletal key-points using mmWave radar data alone. Skeletal pose estimation is critical in several applications ranging from autonomous vehicles, traffic monitoring, patient monitoring, gait analysis, to defense security forensics, and aid both preventative and actionable decision making. The use of mmWave radars for this task, over traditionally employed optical sensors, provide several advantages, primarily its operational robustness to scene lighting and adverse weather conditions, where optical sensor performance degrade significantly. The mmWave radar point-cloud (PCL) data is first voxelized (analogous to tokenization in NLP) and $N$ frames of the voxelized radar data (analogous to a text paragraph in NLP) is subjected to the proposed mmPose-NLP architecture, where the voxel indices of the 25 skeletal key-points (analogous to keyword extraction in NLP) are predicted. The voxel indices are converted back to real world 3-D coordinates using the voxel dictionary used during the tokenization process. Mean Absolute Error (MAE) metrics were used to measure the accuracy of the proposed system against the ground truth, with the proposed mmPose-NLP offering <3 cm localization errors in the depth, horizontal and vertical axes. The effect of the number of input frames vs performance/accuracy was also studied for N = {1,2,..,10}. A comprehensive methodology, results, discussions and limitations are presented in this paper. All the source codes and results are made available on GitHub for furthering research and development in this critical yet emerging domain of skeletal key-point estimation using mmWave radars.



rate research

Read More

In this paper, mm-Pose, a novel approach to detect and track human skeletons in real-time using an mmWave radar, is proposed. To the best of the authors knowledge, this is the first method to detect >15 distinct skeletal joints using mmWave radar reflection signals. The proposed method would find several applications in traffic monitoring systems, autonomous vehicles, patient monitoring systems and defense forces to detect and track human skeleton for effective and preventive decision making in real-time. The use of radar makes the system operationally robust to scene lighting and adverse weather conditions. The reflected radar point cloud in range, azimuth and elevation are first resolved and projected in Range-Azimuth and Range-Elevation planes. A novel low-size high-resolution radar-to-image representation is also presented, that overcomes the sparsity in traditional point cloud data and offers significant reduction in the subsequent machine learning architecture. The RGB channels were assigned with the normalized values of range, elevation/azimuth and the power level of the reflection signals for each of the points. A forked CNN architecture was used to predict the real-world position of the skeletal joints in 3-D space, using the radar-to-image representation. The proposed method was tested for a single human scenario for four primary motions, (i) Walking, (ii) Swinging left arm, (iii) Swinging right arm, and (iv) Swinging both arms to validate accurate predictions for motion in range, azimuth and elevation. The detailed methodology, implementation, challenges, and validation results are presented.
This article develops the multiple-input multiple-output (MIMO) technology for weather radar sensing. There are ample advantages of MIMO that have been highlighted that can improve the spatial resolution of the observations and also the accuracy of the radar variables. These concepts have been introduced here pertaining to weather radar observations with supporting simulations demonstrating improvements to existing phased array technology. Already MIMO is being used in a big way for hard target detection and tracking and also in the automotive radar industry and it offers similar improvements for weather radar observations. Some of the benefits are discussed here with a phased array platform in mind which offers quadrant outputs.
An equivalent circuit formulation for power system analysis was demonstrated to improve robustness of Power Flow and enable more generalized modeling, including that for RTUs (Remote Terminal Units) and PMUs (Phasor Measurement Units). These measurement device models, together with an adjoint circuit based optimization framework, enable an alternative formulation to Power System State Estimation (SE) that can be solved within the equivalent circuit formulation. In this paper, we utilize a linear RTU model to create a fully linear SE algorithm that includes PMU and RTU measurements to enable a probabilistic approach to SE. Results demonstrate that this is a practical approach that is well suited for real-world applications.
The COVID-19 pandemic has had a significant impact on society, both because of the serious health effects of COVID-19 and because of public health measures implemented to slow its spread. Many of these difficulties are fundamentally information needs; attempts to address these needs have caused an information overload for both researchers and the public. Natural language processing (NLP), the branch of artificial intelligence that interprets human language, can be applied to address many of the information needs made urgent by the COVID-19 pandemic. This review surveys approximately 150 NLP studies and more than 50 systems and datasets addressing the COVID-19 pandemic. We detail work on four core NLP tasks: information retrieval, named entity recognition, literature-based discovery, and question answering. We also describe work that directly addresses aspects of the pandemic through four additional tasks: topic modeling, sentiment and emotion analysis, caseload forecasting, and misinformation detection. We conclude by discussing observable trends and remaining challenges.
A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا