Do you want to publish a course? Click here

Multi-institution encrypted medical imaging AI validation without data sharing

148   0   0.0 ( 0 )
 Added by Rahul Sharma
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Adoption of artificial intelligence medical imaging applications is often impeded by barriers between healthcare systems and algorithm developers given that access to both private patient data and commercial model IP is important to perform pre-deployment evaluation. This work investigates a framework for secure, privacy-preserving and AI-enabled medical imaging inference using CrypTFlow2, a state-of-the-art end-to-end compiler allowing cryptographically secure 2-party Computation (2PC) protocols between the machine learning model vendor and target patient data owner. A common DenseNet-121 chest x-ray diagnosis model was evaluated on multi-institutional chest radiographic imaging datasets both with and without CrypTFlow2 on two test sets spanning seven sites across the US and India, and comprising 1,149 chest x-ray images. We measure comparative AUROC performance between secure and insecure inference in multiple pathology classification tasks, and explore model output distributional shifts and resource constraints introduced by secure model inference. Secure inference with CrypTFlow2 demonstrated no significant difference in AUROC for all diagnoses, and model outputs from secure and insecure inference methods were distributionally equivalent. The use of CrypTFlow2 may allow off-the-shelf secure 2PC between healthcare systems and AI model vendors for medical imaging, without changes in performance, and can facilitate scalable pre-deployment infrastructure for real-world secure model evaluation without exposure to patient data or model IP.

rate research

Read More

Reversible data hiding in encrypted images (RDH-EI) has attracted increasing attention, since it can protect the privacy of original images while the embedded data can be exactly extracted. Recently, some RDH-EI schemes with multiple data hiders have been proposed using secret sharing technique. However, these schemes protect the contents of the original images with lightweight security level. In this paper, we propose a high-security RDH-EI scheme with multiple data hiders. First, we introduce a cipher-feedback secret sharing (CFSS) technique. It follows the cryptography standards by introducing the cipher-feedback strategy of AES. Then, using the CFSS technique, we devise a new (r,n)-threshold (r<=n) RDH-EI scheme with multiple data hiders called CFSS-RDHEI. It can encrypt an original image into n encrypted images with reduced size using an encryption key and sends each encrypted image to one data hider. Each data hider can independently embed secret data into the encrypted image to obtain the corresponding marked encrypted image. The original image can be completely recovered from r marked encrypted images and the encryption key. Performance evaluations show that our CFSS-RDHEI scheme has high embedding rate and its generated encrypted images are much smaller, compared to existing secret sharing-based RDH-EI schemes. Security analysis demonstrates that it can achieve high security to defense some commonly used security attacks.
127 - Han Qiu , Meikang Qiu , Meiqin Liu 2019
The recent spades of cyber security attacks have compromised end users data safety and privacy in Medical Cyber-Physical Systems (MCPS). Traditional standard encryption algorithms for data protection are designed based on a viewpoint of system architecture rather than a viewpoint of end users. As such encryption algorithms are transferring the protection on the data to the protection on the keys, data safety and privacy will be compromised once the key is exposed. In this paper, we propose a secure data storage and sharing method consisted by a selective encryption algorithm combined with fragmentation and dispersion to protect the data safety and privacy even when both transmission media (e.g. cloud servers) and keys are compromised. This method is based on a user-centric design that protects the data on a trusted device such as end users smartphone and lets the end user to control the access for data sharing. We also evaluate the performance of the algorithm on a smartphone platform to prove the efficiency.
One of the most effective approaches to improving the performance of a machine-learning model is to acquire additional training data. To do so, a model owner may seek to acquire relevant training data from a data owner. Before procuring the data, the model owner needs to appraise the data. However, the data owner generally does not want to share the data until after an agreement is reached. The resulting Catch-22 prevents efficient data markets from forming. To address this problem, we develop data appraisal methods that do not require data sharing by using secure multi-party computation. Specifically, we study methods that: (1) compute parameter gradient norms, (2) perform model fine-tuning, and (3) compute influence functions. Our experiments show that influence functions provide an appealing trade-off between high-quality appraisal and required computation.
Reversible data hiding in encrypted domain (RDH-ED) schemes based on symmetric or public key encryption are mainly applied to the security of end-to-end communication. Aimed at providing reliable technical supports for multi-party security scenarios, a separable RDH-ED scheme for secret image sharing based on Chinese remainder theorem (CRT) is presented. In the application of (t, n) secret image sharing, the image is first shared into n different shares of ciphertext. Only when not less than t shares obtained, can the original image be reconstructed. In our scheme, additional data could be embedded into the image shares. To realize data extraction from the image shares and the reconstructed image separably, two data hiding methods are proposed: one is homomorphic difference expansion in encrypted domain (HDE-ED) that supports data extraction from the reconstructed image by utilizing the addition homomorphism of CRT secret sharing; the other is difference expansion in image shares (DE-IS) that supports the data extraction from the marked shares before image reconstruction. Experimental results demonstrate that the proposed scheme could not only maintain the security and the threshold function of secret sharing system, but also obtain a better reversibility and efficiency compared with most existing RDH-ED algorithms. The maximum embedding rate of HDE-ED could reach 0.5000 bits per pixel and the average embedding rate of DE-IS is 0.0545 bits per bit of ciphertext.
75 - Yanjun Pan , Alon Efrat , Ming Li 2020
Due to increasing concerns of data privacy, databases are being encrypted before they are stored on an untrusted server. To enable search operations on the encrypted data, searchable encryption techniques have been proposed. Representative schemes use order-preserving encryption (OPE) for supporting efficient Boolean queries on encrypted databases. Yet, recent works showed the possibility of inferring plaintext data from OPE-encrypted databases, merely using the order-preserving constraints, or combined with an auxiliary plaintext dataset with similar frequency distribution. So far, the effectiveness of such attacks is limited to single-dimensional dense data (most values from the domain are encrypted), but it remains challenging to achieve it on high-dimensional datasets (e.g., spatial data) which are often sparse in nature. In this paper, for the first time, we study data inference attacks on multi-dimensional encrypted databases (with 2-D as a special case). We formulate it as a 2-D order-preserving matching problem and explore both unweighted and weighted cases, where the former maximizes the number of points matched using only order information and the latter further considers points with similar frequencies. We prove that the problem is NP-hard, and then propose a greedy algorithm, along with a polynomial-time algorithm with approximation guarantees. Experimental results on synthetic and real-world datasets show that the data recovery rate is significantly enhanced compared with the previous 1-D matching algorithm.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا