Do you want to publish a course? Click here

Data Appraisal Without Data Sharing

126   0   0.0 ( 0 )
 Added by Xinlei Xu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

One of the most effective approaches to improving the performance of a machine-learning model is to acquire additional training data. To do so, a model owner may seek to acquire relevant training data from a data owner. Before procuring the data, the model owner needs to appraise the data. However, the data owner generally does not want to share the data until after an agreement is reached. The resulting Catch-22 prevents efficient data markets from forming. To address this problem, we develop data appraisal methods that do not require data sharing by using secure multi-party computation. Specifically, we study methods that: (1) compute parameter gradient norms, (2) perform model fine-tuning, and (3) compute influence functions. Our experiments show that influence functions provide an appealing trade-off between high-quality appraisal and required computation.



rate research

Read More

Can health entities collaboratively train deep learning models without sharing sensitive raw data? This paper proposes several configurations of a distributed deep learning method called SplitNN to facilitate such collaborations. SplitNN does not share raw data or model details with collaborating institutions. The proposed configurations of splitNN cater to practical settings of i) entities holding different modalities of patient data, ii) centralized and local health entities collaborating on multiple tasks and iii) learning without sharing labels. We compare performance and resource efficiency trade-offs of splitNN and other distributed deep learning methods like federated learning, large batch synchronous stochastic gradient descent and show highly encouraging results for splitNN.
In the classical multi-party computation setting, multiple parties jointly compute a function without revealing their own input data. We consider a variant of this problem, where the input data can be shared for machine learning training purposes, but the data are also encrypted so that they cannot be recovered by other parties. We present a rotation based method using flow model, and theoretically justified its security. We demonstrate the effectiveness of our method in different scenarios, including supervised secure model training, and unsupervised generative model training. Our code is available at https://github.com/ duchenzhuang/flowencrypt.
Adoption of artificial intelligence medical imaging applications is often impeded by barriers between healthcare systems and algorithm developers given that access to both private patient data and commercial model IP is important to perform pre-deployment evaluation. This work investigates a framework for secure, privacy-preserving and AI-enabled medical imaging inference using CrypTFlow2, a state-of-the-art end-to-end compiler allowing cryptographically secure 2-party Computation (2PC) protocols between the machine learning model vendor and target patient data owner. A common DenseNet-121 chest x-ray diagnosis model was evaluated on multi-institutional chest radiographic imaging datasets both with and without CrypTFlow2 on two test sets spanning seven sites across the US and India, and comprising 1,149 chest x-ray images. We measure comparative AUROC performance between secure and insecure inference in multiple pathology classification tasks, and explore model output distributional shifts and resource constraints introduced by secure model inference. Secure inference with CrypTFlow2 demonstrated no significant difference in AUROC for all diagnoses, and model outputs from secure and insecure inference methods were distributionally equivalent. The use of CrypTFlow2 may allow off-the-shelf secure 2PC between healthcare systems and AI model vendors for medical imaging, without changes in performance, and can facilitate scalable pre-deployment infrastructure for real-world secure model evaluation without exposure to patient data or model IP.
Offline reinforcement learning (RL) algorithms have shown promising results in domains where abundant pre-collected data is available. However, prior methods focus on solving individual problems from scratch with an offline dataset without considering how an offline RL agent can acquire multiple skills. We argue that a natural use case of offline RL is in settings where we can pool large amounts of data collected in various scenarios for solving different tasks, and utilize all of this data to learn behaviors for all the tasks more effectively rather than training each one in isolation. However, sharing data across all tasks in multi-task offline RL performs surprisingly poorly in practice. Thorough empirical analysis, we find that sharing data can actually exacerbate the distributional shift between the learned policy and the dataset, which in turn can lead to divergence of the learned policy and poor performance. To address this challenge, we develop a simple technique for data-sharing in multi-task offline RL that routes data based on the improvement over the task-specific data. We call this approach conservative data sharing (CDS), and it can be applied with multiple single-task offline RL methods. On a range of challenging multi-task locomotion, navigation, and vision-based robotic manipulation problems, CDS achieves the best or comparable performance compared to prior offline multi-task RL methods and previous data sharing approaches.
Training sample re-weighting is an effective approach for tackling data biases such as imbalanced and corrupted labels. Recent methods develop learning-based algorithms to learn sample re-weighting strategies jointly with model training based on the frameworks of reinforcement learning and meta learning. However, depending on additional unbiased reward data is limiting their general applicability. Furthermore, existing learning-based sample re-weighting methods require nested optimizations of models and weighting parameters, which requires expensive second-order computation. This paper addresses these two problems and presents a novel learning-based fast sample re-weighting (FSR) method that does not require additional reward data. The method is based on two key ideas: learning from history to build proxy reward data and feature sharing to reduce the optimization cost. Our experiments show the proposed method achieves competitive results compared to state of the arts on label noise robustness and long-tailed recognition, and does so while achieving significantly improved training efficiency. The source code is publicly available at https://github.com/google-research/google-research/tree/master/ieg.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا