Do you want to publish a course? Click here

Privacy-preserving Health Data Sharing for Medical Cyber-Physical Systems

128   0   0.0 ( 0 )
 Added by Han Qiu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The recent spades of cyber security attacks have compromised end users data safety and privacy in Medical Cyber-Physical Systems (MCPS). Traditional standard encryption algorithms for data protection are designed based on a viewpoint of system architecture rather than a viewpoint of end users. As such encryption algorithms are transferring the protection on the data to the protection on the keys, data safety and privacy will be compromised once the key is exposed. In this paper, we propose a secure data storage and sharing method consisted by a selective encryption algorithm combined with fragmentation and dispersion to protect the data safety and privacy even when both transmission media (e.g. cloud servers) and keys are compromised. This method is based on a user-centric design that protects the data on a trusted device such as end users smartphone and lets the end user to control the access for data sharing. We also evaluate the performance of the algorithm on a smartphone platform to prove the efficiency.



rate research

Read More

Privacy protection in electronic healthcare applications is an important consideration due to the sensitive nature of personal health data. Internet of Health Things (IoHT) networks have privacy requirements within a healthcare setting. However, these networks have unique challenges and security requirements (integrity, authentication, privacy and availability) must also be balanced with the need to maintain efficiency in order to conserve battery power, which can be a significant limitation in IoHT devices and networks. Data are usually transferred without undergoing filtering or optimization, and this traffic can overload sensors and cause rapid battery consumption when interacting with IoHT networks. This consequently poses restrictions on the practical implementation of these devices. As a solution to address the issues, this paper proposes a privacy-preserving two-tier data inference framework, this can conserve battery consumption by reducing the data size required to transmit through inferring the sensed data and can also protect the sensitive data from leakage to adversaries. Results from experimental evaluations on privacy show the validity of the proposed scheme as well as significant data savings without compromising the accuracy of the data transmission, which contributes to energy efficiency of IoHT sensor devices.
Multisite medical data sharing is critical in modern clinical practice and medical research. The challenge is to conduct data sharing that preserves individual privacy and data usability. The shortcomings of traditional privacy-enhancing technologies mean that institutions rely on bespoke data sharing contracts. These contracts increase the inefficiency of data sharing and may disincentivize important clinical treatment and medical research. This paper provides a synthesis between two novel advanced privacy enhancing technologies (PETs): Homomorphic Encryption and Secure Multiparty Computation (defined together as Multiparty Homomorphic Encryption or MHE). These PETs provide a mathematical guarantee of privacy, with MHE providing a performance advantage over separately using HE or SMC. We argue MHE fulfills legal requirements for medical data sharing under the General Data Protection Regulation (GDPR) which has set a global benchmark for data protection. Specifically, the data processed and shared using MHE can be considered anonymized data. We explain how MHE can reduce the reliance on customized contractual measures between institutions. The proposed approach can accelerate the pace of medical research whilst offering additional incentives for healthcare and research institutes to employ common data interoperability standards.
Releasing full data records is one of the most challenging problems in data privacy. On the one hand, many of the popular techniques such as data de-identification are problematic because of their dependence on the background knowledge of adversaries. On the other hand, rigorous methods such as the exponential mechanism for differential privacy are often computationally impractical to use for releasing high dimensional data or cannot preserve high utility of original data due to their extensive data perturbation. This paper presents a criterion called plausible deniability that provides a formal privacy guarantee, notably for releasing sensitive datasets: an output record can be released only if a certain amount of input records are indistinguishable, up to a privacy parameter. This notion does not depend on the background knowledge of an adversary. Also, it can efficiently be checked by privacy tests. We present mechanisms to generate synthetic datasets with similar statistical properties to the input data and the same format. We study this technique both theoretically and experimentally. A key theoretical result shows that, with proper randomization, the plausible deniability mechanism generates differentially private synthetic data. We demonstrate the efficiency of this generative technique on a large dataset; it is shown to preserve the utility of original data with respect to various statistical analysis and machine learning measures.
COVID-19 has fundamentally disrupted the way we live. Government bodies, universities, and companies worldwide are rapidly developing technologies to combat the COVID-19 pandemic and safely reopen society. Essential analytics tools such as contact tracing, super-spreader event detection, and exposure mapping require collecting and analyzing sensitive user information. The increasing use of such powerful data-driven applications necessitates a secure, privacy-preserving infrastructure for computation on personal data. In this paper, we analyze two such computing infrastructures under development at the University of Illinois at Urbana-Champaign to track and mitigate the spread of COVID-19. First, we present Safer Illinois, a system for decentralized health analytics supporting two applications currently deployed with widespread adoption: digital contact tracing and COVID-19 status cards. Second, we introduce the RokWall architecture for privacy-preserving centralized data analytics on sensitive user data. We discuss the architecture of these systems, design choices, threat models considered, and the challenges we experienced in developing production-ready systems for sensitive data analysis.
In this paper, we propose a privacy-preserving medical treatment system using nondeterministic finite automata (NFA), hereafter referred to as P-Med, designed for the remote medical environment. P-Med makes use of the nondeterministic transition characteristic of NFA to flexibly represent the medical model, which includes illness states, treatment methods and state transitions caused by exerting different treatment methods. A medical model is encrypted and outsourced to the cloud to deliver telemedicine services. Using P-Med, patient-centric diagnosis and treatment can be made on-the-fly while protecting the confidentiality of a patients illness states and treatment recommendation results. Moreover, a new privacy-preserving NFA evaluation method is given in P-Med to get a confidential match result for the evaluation of an encrypted NFA and an encrypted data set, which avoids the cumbersome inner state transition determination. We demonstrate that P-Med realizes treatment procedure recommendation without privacy leakage to unauthorized parties. We conduct extensive experiments and analyses to evaluate efficiency.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا