Do you want to publish a course? Click here

Hystereses in dwarf nova outbursts and low-mass X-ray binaries

100   0   0.0 ( 0 )
 Added by Jean-Marie Hameury
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context. The disc instability model (DIM) successfully explains why many accreting compact binary systems exhibit outbursts, during which their luminosity increases by orders of magnitude. The DIM correctly predicts which systems should be transient and works regardless of whether the accretor is a black hole, a neutron star or a white dwarf. However, it has been known for some time that the outbursts of X-ray binaries (which contain neutron-star or black-hole accretors) exhibit hysteresis in the X-ray hardness-intensity diagram (HID). More recently, it has been shown that the outbursts of accreting white dwarfs also show hysteresis, but in a diagram combining optical, EUV and X-ray fluxes. Aims. We examine here the nature of the hysteresis observed in cataclysmic variables and low-mass X-ray binaries. Methods. We use the Hameury et al. (1998) code for modelling dwarf nova outbursts, and construct the hardness intensity diagram as predicted by the disc instability model. Results. We show explicitly that the standard DIM - modified only to account for disc truncation - can explain the hysteresis observed in accreting white dwarfs, but cannot explain that observed in X-ray binaries. Conclusions. The spectral evidence for the existence of different accretion regimes / components (disc, corona, jets, etc.) should be based only on wavebands that are specific to the innermost parts of the discs, i.e. EUV and X-rays, which is a difficult task because of interstellar absorption. The existing data, however, indicate that an EUV/X-ray hysteresis is present in SS Cyg.



rate research

Read More

Context. Although the disc instability model is widely accepted as the explanation for dwarf nova outbursts, it is still necessary to confront its predictions to observations because much of the constraints on angular momentum transport in accretion discs are derived from the application of this model to real systems. Aims. We test the predictions of the model concerning the multicolour time evolution of outbursts for two well--observed systems, SS Cyg and VW Hyi. Methods. We calculate the multicolour evolution of dwarf nova outbursts using the disc instability model and taking into account the contribution from the irradiated secondary, the white dwarf and the hot spot. Results. Observations definitely show the existence of a hysteresis in the optical colour-magnitude diagram during the evolution of dwarf nova outbursts. We find that the disc instability model naturally explains the existence and the orientation of this hysteresis. For the specific cases of SS Cyg and VW Hyi, the colour and magnitude ranges covered during the evolution of the system are in reasonable agreement with observations. However, the observed colours are bluer than observed near the peak of the outbursts -- as in steady systems, and the amplitude of the hysteresis cycle is smaller than observed. The predicted colours significantly depend on the assumptions made for calculating the disc spectrum during rise, and on the magnitude of the secondary irradiation for the decaying part of the outburst. Conclusions. Improvements of the spectral disc models are strongly needed if one wishes to address the system evolution in the UV.
79 - K. Alabarta 2021
Black hole low-mass X-ray binaries (BH LMXBs) evolve in a similar way during outburst. Based on the X-ray spectrum and variability, this evolution can be divided into three canonical states: low/hard, intermediate and high/soft state. BH LMXBs evolve from the low/hard to the high/soft state through the intermediate state in some outbursts (here called full outbursts). However, in other cases, BH LMXBs undergo outbursts in which the source never reaches the high/soft state, here called Failed-Transition outburst (FT outbursts). From a sample of 56 BH LMXBs undergoing 128 outbursts, we find that $sim$36% of these BH LMXBs experienced at least one FT outburst, and that FT outbursts represent $sim$33% of the outbursts of the sample, showing that these are common events. We compare all the available X-ray data of full and FT outbursts of BH LMXBs from RXTE/PCA, Swift/BAT and MAXI and find that FT and full outbursts cannot be distinguished from their X-ray light curves, HIDs or X-ray variability during the initial 10-60 days after the outburst onset. This suggests that both types of outbursts are driven by the same physical process. We also compare the optical and infrared (O/IR) data of FT and full outbursts of GX 339-4. We found that this system is generally brighter in O/IR bands before an FT outburst, suggesting that the O/IR flux points to the physical process that later leads to a full or an FT outburst. We discuss our results in the context of models that describe the onset and evolution of outbursts in accreting X-ray binaries.
Be/X-ray binary systems exhibit both periodic (Type I) X-ray outbursts and giant (Type II) outbursts, whose origin has remained elusive. We suggest that Type II X-ray outbursts occur when a highly misaligned decretion disk around the Be star becomes eccentric, allowing the compact object companion to capture a large amount of material at periastron. Using 3D smoothed particle hydrodynamics simulations we model the long term evolution of a representative Be/X-ray binary system. We find that periodic (Type I) X-ray outbursts occur when the neutron star is close to periastron for all disk inclinations. Type II outbursts occur for large misalignment angles and are associated with eccentricity growth that occurs on a timescale of about 10 orbital periods. Mass capture from the eccentric decretion disk results in an accretion disk around the neutron star whose estimated viscous time is long enough to explain the extended duration of Type II outbursts. Previous studies suggested that the outbursts are caused by a warped disk but our results suggest that this is not sufficient, the disk must be both highly misaligned and eccentric to initiate a Type II accretion event.
The phenomenological Disc Instability Model has been successful in reproducing the observed light curves of dwarf nova outbursts by invoking an enhanced Shakura-Sunyaev $alpha$ parameter $sim0.1-0.2$ in outburst compared to a low value $sim0.01$ in quiescence. Recent thermodynamically consistent simulations of magnetorotational (MRI) turbulence with appropriate opacities and equation of state for dwarf nova accretion discs have found that thermal convection enhances $alpha$ in discs in outburst, but only near the hydrogen ionization transition. At higher temperatures, convection no longer exists and $alpha$ returns to the low value comparable to that in quiescence. In order to check whether this enhancement near the hydrogen ionization transition is sufficient to reproduce observed light curves, we incorporate this MRI-based variation in $alpha$ into the Disc Instability Model, as well as simulation-based models of turbulent dissipation and convective transport. These MRI-based models can successfully reproduce observed outburst and quiescence durations, as well as outburst amplitudes, albeit with different parameters from the standard Disc Instability Models. The MRI-based model lightcurves exhibit reflares in the decay from outburst, which are not generally observed in dwarf novae. However, we highlight the problematic aspects of the quiescence physics in the Disc Instability Model and MRI simulations that are responsible for this behavior.
82 - M. Diaz Trigo , L. Boirin 2015
In the last decade, X-ray spectroscopy has enabled a wealth of discoveries of photoionised absorbers in X-ray binaries. Studies of such accretion disc atmospheres and winds are of fundamental importance to understand accretion processes and possible feedback mechanisms to the environment. In this work, we review the current observational state and theoretical understanding of accretion disc atmospheres and winds in low-mass X-ray binaries, focusing on the wind launching mechanisms and on the dependence on accretion state. We conclude with issues that deserve particular attention.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا