Do you want to publish a course? Click here

Evaluating Effectiveness of Public Health Intervention Strategies for Mitigating COVID-19 Pandemic

69   0   0.0 ( 0 )
 Added by Shanghong Xie
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Coronavirus disease 2019 (COVID-19) pandemic is an unprecedented global public health challenge. In the United States (US), state governments have implemented various non-pharmaceutical interventions (NPIs), such as physical distance closure (lockdown), stay-at-home order, mandatory facial mask in public in response to the rapid spread of COVID-19. To evaluate the effectiveness of these NPIs, we propose a nested case-control design with propensity score weighting under the quasi-experiment framework to estimate the average intervention effect on disease transmission across states. We further develop a method to test for factors that moderate intervention effect to assist precision public health intervention. Our method takes account of the underlying dynamics of disease transmission and balance state-level pre-intervention characteristics. We prove that our estimator provides causal intervention effect under assumptions. We apply this method to analyze US COVID-19 incidence cases to estimate the effects of six interventions. We show that lockdown has the largest effect on reducing transmission and reopening bars significantly increase transmission. States with a higher percentage of non-white population are at greater risk of increased $R_t$ associated with reopening bars.



rate research

Read More

Without proper medication and vaccination for the COVID-19, many governments are using automated digital healthcare surveillance system to prevent and control the spread. There is not enough literature explaining the concerns and privacy issues; hence, we have briefly explained the topics in this paper. We focused on digital healthcare surveillance systems privacy concerns and different segments. Further research studies should be conducted in different sectors. This paper provides an overview based on the published articles, which are not focusing on the privacy issues that much. Artificial intelligence and 5G networks combine the advanced digital healthcare surveillance system; whereas Bluetooth-based contact tracing systems have fewer privacy concerns. More studies are required to find the appropriate digital healthcare surveillance system, which would be ideal for monitoring, controlling, and predicting the COVID-19 trajectory.
178 - Liang Tian , Xuefei Li , Fei Qi 2020
Within a short period of time, COVID-19 grew into a world-wide pandemic. Transmission by pre-symptomatic and asymptomatic viral carriers rendered intervention and containment of the disease extremely challenging. Based on reported infection case studies, we construct an epidemiological model that focuses on transmission around the symptom onset. The model is calibrated against incubation period and pairwise transmission statistics during the initial outbreaks of the pandemic outside Wuhan with minimal non-pharmaceutical interventions. Mathematical treatment of the model yields explicit expressions for the size of latent and pre-symptomatic subpopulations during the exponential growth phase, with the local epidemic growth rate as input. We then explore reduction of the basic reproduction number R_0 through specific disease control measures such as contact tracing, testing, social distancing, wearing masks and sheltering in place. When these measures are implemented in combination, their effects on R_0 multiply. We also compare our model behaviour to the first wave of the COVID-19 spreading in various affected regions and highlight generic and less generic features of the pandemic development.
67 - Zixin Hu , Qiyang Ge , Shudi Li 2020
When the Covid-19 pandemic enters dangerous new phase, whether and when to take aggressive public health interventions to slow down the spread of COVID-19. To develop the artificial intelligence (AI) inspired methods for real-time forecasting and evaluating intervention strategies to curb the spread of Covid-19 in the World. A modified auto-encoder for modeling the transmission dynamics of the epidemics is developed and applied to the surveillance data of cumulative and new Covid-19 cases and deaths from WHO, as of March 16, 2020. The average errors of 5-step forecasting were 2.5%. The total peak number of cumulative cases and new cases, and the maximum number of cumulative cases in the world with later intervention (comprehensive public health intervention is implemented 4 weeks later) could reach 75,249,909, 10,086,085, and 255,392,154, respectively. The case ending time was January 10, 2021. However, the total peak number of cumulative cases and new cases and the maximum number of cumulative cases in the world with one week later intervention were reduced to 951,799, 108,853 and 1,530,276, respectively. Duration time of the Covid-19 spread would be reduced from 356 days to 232 days. The case ending time was September 8, 2020. We observed that delaying intervention for one month caused the maximum number of cumulative cases to increase 166.89 times, and the number of deaths increase from 53,560 to 8,938,725. We will face disastrous consequences if immediate action to intervene is not taken.
COVID-19--a viral infectious disease--has quickly emerged as a global pandemic infecting millions of people with a significant number of deaths across the globe. The symptoms of this disease vary widely. Depending on the symptoms an infected person is broadly classified into two categories namely, asymptomatic and symptomatic. Asymptomatic individuals display mild or no symptoms but continue to transmit the infection to otherwise healthy individuals. This particular aspect of asymptomatic infection poses a major obstacle in managing and controlling the transmission of the infectious disease. In this paper, we attempt to mathematically model the spread of COVID-19 in India under various intervention strategies. We consider SEIR type epidemiological models, incorporated with India specific social contact matrix representing contact structures among different age groups of the population. Impact of various factors such as presence of asymptotic individuals, lockdown strategies, social distancing practices, quarantine, and hospitalization on the disease transmission is extensively studied. Numerical simulation of our model is matched with the real COVID-19 data of India till May 15, 2020 for the purpose of estimating the model parameters. Our model with zone-wise lockdown is seen to give a decent prediction for July 20, 2020.
In this study, we present a new epidemiological model, with contamination from confirmed and unreported. We also compute equilibria and study their stability without intervention strategies. Optimal control theory has proven to be a successful tool in understanding ways to curtail the spread of infectious diseases by devising the optimal disease intervention strategies. We investigate the impact of distancing, case finding, and case holding controls while at the same time, we minimize the number of infected and dead individuals. The method consists of minimizing the cost functional related to infectious, death, and controls through some strategies to reduce the spread of the COVID19 epidemic.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا