Do you want to publish a course? Click here

Calibrated Intervention and Containment of the COVID-19 Pandemic

179   0   0.0 ( 0 )
 Added by Liang Tian
 Publication date 2020
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

Within a short period of time, COVID-19 grew into a world-wide pandemic. Transmission by pre-symptomatic and asymptomatic viral carriers rendered intervention and containment of the disease extremely challenging. Based on reported infection case studies, we construct an epidemiological model that focuses on transmission around the symptom onset. The model is calibrated against incubation period and pairwise transmission statistics during the initial outbreaks of the pandemic outside Wuhan with minimal non-pharmaceutical interventions. Mathematical treatment of the model yields explicit expressions for the size of latent and pre-symptomatic subpopulations during the exponential growth phase, with the local epidemic growth rate as input. We then explore reduction of the basic reproduction number R_0 through specific disease control measures such as contact tracing, testing, social distancing, wearing masks and sheltering in place. When these measures are implemented in combination, their effects on R_0 multiply. We also compare our model behaviour to the first wave of the COVID-19 spreading in various affected regions and highlight generic and less generic features of the pandemic development.



rate research

Read More

We consider here an extended SIR model, including several features of the recent COVID-19 outbreak: in particular the infected and recovered individuals can either be detected (+) or undetected (-) and we also integrate an intensive care unit (ICU) capacity. Our model enables a tractable quantitative analysis of the optimal policy for the control of the epidemic dynamics using both lockdown and detection intervention levers. With parametric specification based on literature on COVID-19, we investigate the sensitivities of various quantities on the optimal strategies, taking into account the subtle trade-off between the sanitary and the socio-economic cost of the pandemic, together with the limited capacity level of ICU. We identify the optimal lockdown policy as an intervention structured in 4 successive phases: First a quick and strong lockdown intervention to stop the exponential growth of the contagion; second a short transition phase to reduce the prevalence of the virus; third a long period with full ICU capacity and stable virus prevalence; finally a return to normal social interactions with disappearance of the virus. The optimal scenario hereby avoids the second wave of infection, provided the lockdown is released sufficiently slowly. We also provide optimal intervention measures with increasing ICU capacity, as well as optimization over the effort on detection of infectious and immune individuals. Whenever massive resources are introduced to detect infected individuals, the pressure on social distancing can be released, whereas the impact of detection of immune individuals reveals to be more moderate.
67 - Zixin Hu , Qiyang Ge , Shudi Li 2020
When the Covid-19 pandemic enters dangerous new phase, whether and when to take aggressive public health interventions to slow down the spread of COVID-19. To develop the artificial intelligence (AI) inspired methods for real-time forecasting and evaluating intervention strategies to curb the spread of Covid-19 in the World. A modified auto-encoder for modeling the transmission dynamics of the epidemics is developed and applied to the surveillance data of cumulative and new Covid-19 cases and deaths from WHO, as of March 16, 2020. The average errors of 5-step forecasting were 2.5%. The total peak number of cumulative cases and new cases, and the maximum number of cumulative cases in the world with later intervention (comprehensive public health intervention is implemented 4 weeks later) could reach 75,249,909, 10,086,085, and 255,392,154, respectively. The case ending time was January 10, 2021. However, the total peak number of cumulative cases and new cases and the maximum number of cumulative cases in the world with one week later intervention were reduced to 951,799, 108,853 and 1,530,276, respectively. Duration time of the Covid-19 spread would be reduced from 356 days to 232 days. The case ending time was September 8, 2020. We observed that delaying intervention for one month caused the maximum number of cumulative cases to increase 166.89 times, and the number of deaths increase from 53,560 to 8,938,725. We will face disastrous consequences if immediate action to intervene is not taken.
In all Countries the political decisions aim to achieve an almost stable configuration with a small number of new infected individuals per day due to Covid-19. When such a condition is reached, the containment effort is usually reduced in favor of a gradual reopening of the social life and of the various economical sectors. However, in this new phase, the infection spread restarts and a quantitative analysis of the regrowth is very useful. We discuss a macroscopic approach which, on the basis of the collected data in the first lockdown, after few days from the beginning of the new phase, outlines different scenarios of the Covid-19 diffusion for longer time. The purpose of this paper is a demonstration-of-concept: one takes simple growth models, considers the available data and shows how the future trend of the spread can be obtained. The method applies a time dependent carrying capacity, analogously to many macroscopic growth laws in biology, economics and population dynamics. The illustrative cases of Singapore, France, Spain and Italy are analyzed.
By characterising the time evolution of COVID-19 in term of its velocity (log of the new cases per day) and its rate of variation, or acceleration, we show that in many countries there has been a deceleration even before lockdowns were issued. This feature, possibly due to the increase of social awareness, can be rationalised by a susceptible-hidden-infected-recovered (SHIR) model introduced by Barnes, in which a hidden (isolated from the virus) compartment $H$ is gradually populated by susceptible people, thus reducing the effectiveness of the virus spreading. By introducing a partial hiding mechanism, for instance due to the impossibility for a fraction of the population to enter the hidden state, we obtain a model that, although still sufficiently simple, faithfully reproduces the different deceleration trends observed in several major countries.
The all-pervasive lens that humans ordinarily use to watch and analyze the pandemic is time. This article considers an alternative. Instead of tracking incidence as a function of time, new cases are counted as a function of cumulative cases. This resource-centric perspective, which is more natural and physically justified, is the perspective of the virus. In this article, we demonstrate the relevance of this approach by characterizing an outbreak as an independent increments Gaussian process that fluctuates about a deterministic curve, called the incidence-cumulative cases (ICC) curve. We illustrate these concepts on Influenza A and COVID-19 outbreaks in the US. The novel perspective presented here reveals universal properties of disease spread that would otherwise remain hidden.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا