Do you want to publish a course? Click here

Overview of digital health surveillance system during COVID-19 pandemic: public health issues and misapprehensions

244   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Without proper medication and vaccination for the COVID-19, many governments are using automated digital healthcare surveillance system to prevent and control the spread. There is not enough literature explaining the concerns and privacy issues; hence, we have briefly explained the topics in this paper. We focused on digital healthcare surveillance systems privacy concerns and different segments. Further research studies should be conducted in different sectors. This paper provides an overview based on the published articles, which are not focusing on the privacy issues that much. Artificial intelligence and 5G networks combine the advanced digital healthcare surveillance system; whereas Bluetooth-based contact tracing systems have fewer privacy concerns. More studies are required to find the appropriate digital healthcare surveillance system, which would be ideal for monitoring, controlling, and predicting the COVID-19 trajectory.



rate research

Read More

Coronavirus disease 2019 (COVID-19) pandemic is an unprecedented global public health challenge. In the United States (US), state governments have implemented various non-pharmaceutical interventions (NPIs), such as physical distance closure (lockdown), stay-at-home order, mandatory facial mask in public in response to the rapid spread of COVID-19. To evaluate the effectiveness of these NPIs, we propose a nested case-control design with propensity score weighting under the quasi-experiment framework to estimate the average intervention effect on disease transmission across states. We further develop a method to test for factors that moderate intervention effect to assist precision public health intervention. Our method takes account of the underlying dynamics of disease transmission and balance state-level pre-intervention characteristics. We prove that our estimator provides causal intervention effect under assumptions. We apply this method to analyze US COVID-19 incidence cases to estimate the effects of six interventions. We show that lockdown has the largest effect on reducing transmission and reopening bars significantly increase transmission. States with a higher percentage of non-white population are at greater risk of increased $R_t$ associated with reopening bars.
Digital contact tracing is a public health intervention. It should be integrated with local health policy, provide rapid and accurate notifications to exposed individuals, and encourage high app uptake and adherence to quarantine. Real-time monitoring and evaluation of effectiveness of app-based contact tracing is key for improvement and public trust.
There has been vigorous debate on how different countries responded to the COVID-19 pandemic. To secure public safety, South Korea actively used personal information at the risk of personal privacy whereas France encouraged voluntary cooperation at the risk of public safety. In this article, after a brief comparison of contextual differences with France, we focus on South Koreas approaches to epidemiological investigations. To evaluate the issues pertaining to personal privacy and public health, we examine the usage patterns of original data, de-identification data, and encrypted data. Our specific proposal discusses the COVID index, which considers collective infection, outbreak intensity, availability of medical infrastructure, and the death rate. Finally, we summarize the findings and lessons for future research and the policy implications.
Physical and mental well-being during the COVID-19 pandemic is typically assessed via surveys, which might make it difficult to conduct longitudinal studies and might lead to data suffering from recall bias. Ecological momentary assessment (EMA) driven smartphone apps can help alleviate such issues, allowing for in situ recordings. Implementing such an app is not trivial, necessitates strict regulatory and legal requirements, and requires short development cycles to appropriately react to abrupt changes in the pandemic. Based on an existing app framework, we developed Corona Health, an app that serves as a platform for deploying questionnaire-based studies in combination with recordings of mobile sensors. In this paper, we present the technical details of Corona Health and provide first insights into the collected data. Through collaborative efforts from experts from public health, medicine, psychology, and computer science, we released Corona Health publicly on Google Play and the Apple App Store (in July, 2020) in 8 languages and attracted 7,290 installations so far. Currently, five studies related to physical and mental well-being are deployed and 17,241 questionnaires have been filled out. Corona Health proves to be a viable tool for conducting research related to the COVID-19 pandemic and can serve as a blueprint for future EMA-based studies. The data we collected will substantially improve our knowledge on mental and physical health states, traits and trajectories as well as its risk and protective factors over the course of the COVID-19 pandemic and its diverse prevention measures.
Online social media provides a channel for monitoring peoples social behaviors and their mental distress. Due to the restrictions imposed by COVID-19 people are increasingly using online social networks to express their feelings. Consequently, there is a significant amount of diverse user-generated social media content. However, COVID-19 pandemic has changed the way we live, study, socialize and recreate and this has affected our well-being and mental health problems. There are growing researches that leverage online social media analysis to detect and assess users mental status. In this paper, we survey the literature of social media analysis for mental disorders detection, with a special focus on the studies conducted in the context of COVID-19 during 2020-2021. Firstly, we classify the surveyed studies in terms of feature extraction types, varying from language usage patterns to aesthetic preferences and online behaviors. Secondly, we explore detection methods used for mental disorders detection including machine learning and deep learning detection methods. Finally, we discuss the challenges of mental disorder detection using social media data, including the privacy and ethical concerns, as well as the technical challenges of scaling and deploying such systems at large scales, and discuss the learnt lessons over the last few years.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا