Do you want to publish a course? Click here

Monotone solutions for mean field games master equations : continuous state space and common noise

128   0   0.0 ( 0 )
 Added by Charles Bertucci
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We present the notion of monotone solution of mean field games master equations in the case of a continuous state space. We establish the existence, uniqueness and stability of such solutions under standard assumptions. This notion allows us to work with solutions which are merely continuous in the measure argument, in the case of first order master equations. We study several structures of common noises, in particular ones in which common jumps (or aggregate shocks) can happen randomly, and ones in which the correlation of randomness is carried by an additional parameter.



rate research

Read More

322 - Charles Bertucci 2020
We present a new notion of solution for mean field games master equations. This notion allows us to work with solutions which are merely continuous. We prove first results of uniqueness and stability for such solutions. It turns out that this notion is helpful to characterize the value function of mean field games of optimal stopping or impulse control and this is the topic of the second half of this paper. The notion of solution we introduce is only useful in the monotone case. We focus in this paper in the finite state space case.
In this manuscript, we propose a structural condition on non-separable Hamiltonians, which we term displacement monotonicity condition, to study second order mean field games master equations. A rate of dissipation of a bilinear form is brought to bear a global (in time) well-posedness theory, based on a--priori uniform Lipschitz estimates on the solution in the measure variable. Displacement monotonicity being sometimes in dichotomy with the widely used Lasry-Lions monotonicity condition, the novelties of this work persist even when restricted to separable Hamiltonians.
A theory of existence and uniqueness is developed for general stochastic differential mean field games with common noise. The concepts of strong and weak solutions are introduced in analogy with the theory of stochastic differential equations, and existence of weak solutions for mean field games is shown to hold under very general assumptions. Examples and counter-examples are provided to enlighten the underpinnings of the existence theory. Finally, an analog of the famous result of Yamada and Watanabe is derived, and it is used to prove existence and uniqueness of a strong solution under additional assumptions.
We develop a splitting method to prove the well-posedness, in short time, of solutions for two master equations in mean field game (MFG) theory: the second order master equation, describing MFGs with a common noise, and the system of master equations associated with MFGs with a major player. Both problems are infinite dimensional equations stated in the space of probability measures. Our new approach simplifies, shortens and generalizes previous existence results for second order master equations and provides the first existence result for systems associated with MFG problems with a major player.
In this paper we study second order master equations arising from mean field games with common noise over arbitrary time duration. A classical solution typically requires the monotonicity condition (or small time duration) and sufficiently smooth data. While keeping the monotonicity condition, our goal is to relax the regularity of the data, which is an open problem in the literature. In particular, we do not require any differentiability in terms of the measures, which prevents us from obtaining classical solutions. We shall propose three weaker notions of solutions, named as {it good solutions}, {it weak solutions}, and {it viscosity solutions}, respectively, and establish the wellposedness of the master equation under all three notions. We emphasize that, due to the game nature, one cannot expect comparison principle even for classical solutions. The key for the global (in time) wellposedness is the uniform a priori estimate for the Lipschitz continuity of the solution in the measures. The monotonicity condition is crucial for this uniform estimate and thus is crucial for the existence of the global solution, but is not needed for the uniqueness. To facilitate our analysis, we construct a smooth mollifier for functions on Wasserstein space, which is new in the literature and is interesting in its own right. As an important application of our results, we prove the convergence of the Nash system, a high dimensional system of PDEs arising from the corresponding $N$-player game, under mild regularity requirements. We shall also prove a propagation of chaos property for the associated optimal trajectories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا