Do you want to publish a course? Click here

Mean Field Games Master Equations with Non-separable Hamiltonians and Displacement Monotonicity

160   0   0.0 ( 0 )
 Added by Chenchen Mou
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this manuscript, we propose a structural condition on non-separable Hamiltonians, which we term displacement monotonicity condition, to study second order mean field games master equations. A rate of dissipation of a bilinear form is brought to bear a global (in time) well-posedness theory, based on a--priori uniform Lipschitz estimates on the solution in the measure variable. Displacement monotonicity being sometimes in dichotomy with the widely used Lasry-Lions monotonicity condition, the novelties of this work persist even when restricted to separable Hamiltonians.



rate research

Read More

In this note we prove the uniqueness of solutions to a class of Mean Field Games systems subject to possibly degenerate individual noise. Our results hold true for arbitrary long time horizons and for general non-separable Hamiltonians that satisfy a so-called $displacement monotonicity$ condition. Ours are the first global in time uniqueness results, beyond the well-known Lasry-Lions monotonicity condition, for the Mean Field Games systems involving non-separable Hamiltonians. The displacement monotonicity assumptions imposed on the data provide actually not only uniqueness, but also the existence and regularity of the solutions.
In this paper we study second order master equations arising from mean field games with common noise over arbitrary time duration. A classical solution typically requires the monotonicity condition (or small time duration) and sufficiently smooth data. While keeping the monotonicity condition, our goal is to relax the regularity of the data, which is an open problem in the literature. In particular, we do not require any differentiability in terms of the measures, which prevents us from obtaining classical solutions. We shall propose three weaker notions of solutions, named as {it good solutions}, {it weak solutions}, and {it viscosity solutions}, respectively, and establish the wellposedness of the master equation under all three notions. We emphasize that, due to the game nature, one cannot expect comparison principle even for classical solutions. The key for the global (in time) wellposedness is the uniform a priori estimate for the Lipschitz continuity of the solution in the measures. The monotonicity condition is crucial for this uniform estimate and thus is crucial for the existence of the global solution, but is not needed for the uniqueness. To facilitate our analysis, we construct a smooth mollifier for functions on Wasserstein space, which is new in the literature and is interesting in its own right. As an important application of our results, we prove the convergence of the Nash system, a high dimensional system of PDEs arising from the corresponding $N$-player game, under mild regularity requirements. We shall also prove a propagation of chaos property for the associated optimal trajectories.
113 - Tao Luo , Qingshuo Song 2021
This work establishes the equivalence between Mean Field Game and a class of compressible Navier-Stokes equations for their connections by Hamilton-Jacobi-Bellman equations. The existence of the Nash Equilibrium of the Mean Field Game, and hence the solvability of Navier-Stokes equations, are provided under a set of conditions.
We study first order evolutive Mean Field Games where the Hamiltonian is non-coercive. This situation occurs, for instance, when some directions are forbidden to the generic player at some points. We establish the existence of a weak solution of the system via a vanishing viscosity method and, mainly, we prove that the evolution of the populations density is the push-forward of the initial density through the flow characterized almost everywhere by the optimal trajectories of the control problem underlying the Hamilton-Jacobi equation. As preliminary steps, we need that the optimal trajectories for the control problem are unique (at least for a.e. starting points) and that the optimal controls can be expressed in terms of the horizontal gradient of the value function.
We study first order evolutive Mean Field Games whose operators are non-coercive. This situation occurs, for instance, when some directions are `forbidden to the generic player at some points. Under some regularity assumptions, we establish existence of a weak solution of the system. Mainly, we shall describe the evolution of the populations distribution as the push-forward of the initial distribution through a flow, suitably defined in terms of the underlying optimal control problem.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا