Do you want to publish a course? Click here

Mean field games with common noise

225   0   0.0 ( 0 )
 Added by Daniel Lacker
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

A theory of existence and uniqueness is developed for general stochastic differential mean field games with common noise. The concepts of strong and weak solutions are introduced in analogy with the theory of stochastic differential equations, and existence of weak solutions for mean field games is shown to hold under very general assumptions. Examples and counter-examples are provided to enlighten the underpinnings of the existence theory. Finally, an analog of the famous result of Yamada and Watanabe is derived, and it is used to prove existence and uniqueness of a strong solution under additional assumptions.



rate research

Read More

We consider a mean field game describing the limit of a stochastic differential game of $N$-players whose state dynamics are subject to idiosyncratic and common noise and that can be absorbed when they hit a prescribed region of the state space. We provide a general result for the existence of weak mean field equilibria which, due to the absorption and the common noise, are given by random flow of sub-probabilities. We first use a fixed point argument to find solutions to the mean field problem in a reduced setting resulting from a discretization procedure and then we prove convergence of such equilibria to the desired solution. We exploit these ideas also to construct $varepsilon$-Nash equilibria for the $N$-player game. Since the approximation is two-fold, one given by the mean field limit and one given by the discretization, some suitable convergence results are needed. We also introduce and discuss a novel model of bank run that can be studied within this framework.
Forcing finite state mean field games by a relevant form of common noise is a subtle issue, which has been addressed only recently. Among others, one possible way is to subject the simplex valued dynamics of an equilibrium by a so-called Wright-Fisher noise, very much in the spirit of stochastic models in population genetics. A key feature is that such a random forcing preserves the structure of the simplex, which is nothing but, in this setting, the probability space over the state space of the game. The purpose of this article is hence to elucidate the finite player version and, accordingly, to prove that $N$-player equilibria indeed converge towards the solution of such a kind of Wright-Fisher mean field game. Whilst part of the analysis is made easier by the fact that the corresponding master equation has already been proved to be uniquely solvable under the presence of the common noise, it becomes however more subtle than in the standard setting because the mean field interaction between the players now occurs through a weighted empirical measure. In other words, each player carries its own weight, which hence may differ from $1/N$ and which, most of all, evolves with the common noise.
196 - Ziyu Huang , Shanjian Tang 2021
In this paper, we develop a PDE approach to consider the optimal strategy of mean field controlled stochastic system. Firstly, we discuss mean field SDEs and associated Fokker-Plank eqautions. Secondly, we consider a fully-coupled system of forward-backward PDEs. The backward one is the Hamilton-Jacobi-Bellman equation while the forward one is the Fokker-Planck equation. Our main result is to show the existence of classical solutions of the forward-backward PDEs in the class $H^{1+frac{1}{4},2+frac{1}{2}}([0,T]timesmathbb{R}^n)$ by use of the Schauder fixed point theorem. Then, we use the solution to give the optimal strategy of the mean field stochastic control problem. Finally, we give an example to illustrate the role of our main result.
The purpose of this paper is to provide a complete probabilistic analysis of a large class of stochastic differential games for which the interaction between the players is of mean-field type. We implement the Mean-Field Games strategy developed analytically by Lasry and Lions in a purely probabilistic framework, relying on tailor-made forms of the stochastic maximum principle. While we assume that the state dynamics are affine in the states and the controls, our assumptions on the nature of the costs are rather weak, and surprisingly, the dependence of all the coefficients upon the statistical distribution of the states remains of a rather general nature. Our probabilistic approach calls for the solution of systems of forward-backward stochastic differential equations of a McKean-Vlasov type for which no existence result is known, and for which we prove existence and regularity of the corresponding value function. Finally, we prove that solutions of the mean-field game as formulated by Lasry and Lions do indeed provide approximate Nash equilibriums for games with a large number of players, and we quantify the nature of the approximation.
127 - Charles Bertucci 2021
We present the notion of monotone solution of mean field games master equations in the case of a continuous state space. We establish the existence, uniqueness and stability of such solutions under standard assumptions. This notion allows us to work with solutions which are merely continuous in the measure argument, in the case of first order master equations. We study several structures of common noises, in particular ones in which common jumps (or aggregate shocks) can happen randomly, and ones in which the correlation of randomness is carried by an additional parameter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا