No Arabic abstract
From Hubble Frontier Fields photometry, and data from the Multi Unit Spectroscopic Explorer on the Very Large Telescope, we build the Fundamental Plane (FP) relation for the early-type galaxies of the cluster Abell S1063. We use this relation to develop an improved strong lensing model of the total mass distribution of the cluster, determining the velocity dispersions of all 222 cluster members included in the model from their measured structural parameters. Fixing the hot gas component from X-ray data, the mass density distributions of the diffuse dark matter haloes are optimised by comparing the observed and model-predicted positions of 55 multiple images of 20 background sources, distributed over the redshift range $0.73-6.11$. We determine the uncertainties on the model parameters with Monte Carlo Markov chains. Compared to previous works, our model allows for the inclusion of a scatter on the relation between the total mass and the velocity dispersion of cluster members, which also shows a shallower slope. We notice a lower statistical uncertainty on the value of some parameters, such as the core radius, of the diffuse mass component of the cluster. Thanks to a new estimate of the stellar mass of all members, we measure the projected, cumulative mass profiles out to a radius of 350 kpc, for all baryonic and dark matter components of the cluster. At the outermost radius, we find a baryon fraction of $0.147 pm 0.002$. We compare the sub-haloes as described by our model with recent hydrodynamical cosmological simulations. We find good agreement in terms of stellar mass fraction. On the other hand, we report some discrepancies in terms of maximum circular velocity, which is an indication of their compactness, and sub-halo mass function in the central cluster regions.
Galaxy cluster mergers are a powerful laboratory for testing cosmological and astrophysical models. However, interpreting individual merging clusters depends crucially on their merger configuration, defined by the masses, velocities, impact parameters, and orientation of the merger axis with respect to the plane of the sky. In this work, we investigate the impact of merger parameters on the X-ray emitting intracluster medium and gravitational lensing maps using a suite of idealised simulations of binary cluster mergers performed using the GAMER-2 code. As a test case, we focus on modeling the Bullet Cluster-like merging system Abell 2146, in which deep textit{Chandra} X-ray and lensing observations revealed prominent merger shocks as well as the mass distribution and substructures associated with this merging cluster. We identify the most interesting parameter combinations, and evaluate the effects of various parameters on the properties of merger shocks observed by deep textit{Chandra} and lensing observations. We show that due gravitational compression of the cluster halos during the merger, previous mass estimates from weak lensing are too high. The plane of the merger is tilted further from the plane of the sky than estimated previously, up to $30^circ$ from the plane of the sky. We discuss the applicability of our results to multi-wavelength observations of merging galaxy clusters and their use as probes of cosmology and plasma physics.
We perform a comprehensive study of the total mass distribution of the galaxy cluster RXCJ2248 ($z=0.348$) with a set of high-precision strong lensing models, which take advantage of extensive spectroscopic information on many multiply lensed systems. In the effort to understand and quantify inherent systematics in parametric strong lensing modelling, we explore a collection of 22 models where we use different samples of multiple image families, parametrizations of the mass distribution and cosmological parameters. As input information for the strong lensing models, we use the CLASH HST imaging data and spectroscopic follow-up observations, carried out with the VIMOS and MUSE spectrographs, to identify bona-fide multiple images. A total of 16 background sources, over the redshift range $1.0-6.1$, are multiply lensed into 47 images, 24 of which are spectroscopically confirmed and belong to 10 individual sources. The cluster total mass distribution and underlying cosmology in the models are optimized by matching the observed positions of the multiple images on the lens plane. We show that with a careful selection of a sample of spectroscopically confirmed multiple images, the best-fit model reproduces their observed positions with a rms of $0.3$ in a fixed flat $Lambda$CDM cosmology, whereas the lack of spectroscopic information lead to biases in the values of the model parameters. Allowing cosmological parameters to vary together with the cluster parameters, we find (at $68%$ confidence level) $Omega_m=0.25^{+0.13}_{-0.16}$ and $w=-1.07^{+0.16}_{-0.42}$ for a flat $Lambda$CDM model, and $Omega_m=0.31^{+0.12}_{-0.13}$ and $Omega_Lambda=0.38^{+0.38}_{-0.27}$ for a universe with $w=-1$ and free curvature. Using toy models mimicking the overall configuration of RXCJ2248, we estimate the impact of the line of sight mass structure on the positional rms to be $0.3pm 0.1$.(ABRIDGED)
We utilize the data from the Apache Point Observatory Galactic Evolution Experiment-2 (APOGEE-2) in the fourteenth data release of the Sloan Digital Sky Survey (SDSS) to calculate the line-of-sight velocity dispersion $sigma_{1D}$ of a sample of old open clusters (age larger than 100,Myr) selected from the Milky Way open cluster catalog of Kharchenko et al. (2013). Together with their $K_s$ band luminosity $L_{K_s}$, and the half-light radius $r_{h}$ of the most probable members, we find that these three parameters show significant pairwise correlations among each other. Moreover, a fundamental plane-{it like} relation among these parameters is found for the oldest open clusters (age older than 1,Gyr), $L_{K_s}proptosigma_{1D}^{0.82pm0.29}cdot r_h^{2.19pm0.52}$ with $rms sim, 0.31$,mag in the $K_s$ band absolute magnitude. The existence of this relation, which deviates significantly from the virial theorem prediction, implies that the dynamical structures of the old open clusters are quite similar, when survived from complex dynamical evolution to age older than 1 Gyr.
We present a strong-lensing analysis of four massive galaxy clusters imaged with the Hubble Space Telescope in the Reionization Lensing Cluster Survey. We use a Light-Traces-Mass technique to uncover sets of multiply images and constrain the mass distribution of the clusters. These mass models are the first published for Abell S295 and MACS J0159.8-0849, and are improvements over previous models for Abell 697 and MACS J0025.4-1222. Our analysis for MACS J0025.4-1222 and Abell S295 shows a bimodal mass distribution supporting the merger scenarios proposed for these clusters. The updated model for MACS J0025.4-1222 suggests a substantially smaller critical area than previously estimated. For MACS J0159.8-0849 and Abell 697 we find a single peak and relatively regular morphology, revealing fairly relaxed clusters. Despite being less prominent lenses, three of these clusters seem to have lensing strengths, i.e. cumulative area above certain magnification, similar to the Hubble Frontier Fields clusters (e.g., A($mu>5$) $sim 1-3$ arcmin$^2$, A($mu>10$) $sim 0.5-1.5$ arcmin$^2$), which in part can be attributed to their merging configurations. We make our lens models publicly available through the Mikulski Archive for Space Telescopes. Finally, using Gemini-N/GMOS spectroscopic observations we detect a single emission line from a high-redshift $J_{125}simeq25.7$ galaxy candidate lensed by Abell 697. While we cannot rule out a lower-redshift solution, we interpret the line as Ly$alpha$ at $z=5.800pm 0.001$, in agreement with its photometric redshift and dropout nature. Within this scenario we measure a Ly$alpha$ rest-frame equivalent width of $52pm22$ AA, and an observed Gaussian width of $117pm 15$ km/s.