Do you want to publish a course? Click here

RELICS: Strong Lensing analysis of the galaxy clusters Abell S295, Abell 697, MACS J0025.4-1222, and MACS J0159.8-0849

95   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a strong-lensing analysis of four massive galaxy clusters imaged with the Hubble Space Telescope in the Reionization Lensing Cluster Survey. We use a Light-Traces-Mass technique to uncover sets of multiply images and constrain the mass distribution of the clusters. These mass models are the first published for Abell S295 and MACS J0159.8-0849, and are improvements over previous models for Abell 697 and MACS J0025.4-1222. Our analysis for MACS J0025.4-1222 and Abell S295 shows a bimodal mass distribution supporting the merger scenarios proposed for these clusters. The updated model for MACS J0025.4-1222 suggests a substantially smaller critical area than previously estimated. For MACS J0159.8-0849 and Abell 697 we find a single peak and relatively regular morphology, revealing fairly relaxed clusters. Despite being less prominent lenses, three of these clusters seem to have lensing strengths, i.e. cumulative area above certain magnification, similar to the Hubble Frontier Fields clusters (e.g., A($mu>5$) $sim 1-3$ arcmin$^2$, A($mu>10$) $sim 0.5-1.5$ arcmin$^2$), which in part can be attributed to their merging configurations. We make our lens models publicly available through the Mikulski Archive for Space Telescopes. Finally, using Gemini-N/GMOS spectroscopic observations we detect a single emission line from a high-redshift $J_{125}simeq25.7$ galaxy candidate lensed by Abell 697. While we cannot rule out a lower-redshift solution, we interpret the line as Ly$alpha$ at $z=5.800pm 0.001$, in agreement with its photometric redshift and dropout nature. Within this scenario we measure a Ly$alpha$ rest-frame equivalent width of $52pm22$ AA, and an observed Gaussian width of $117pm 15$ km/s.



rate research

Read More

Strong gravitational lensing by galaxy clusters has become a powerful tool for probing the high-redshift Universe, magnifying distant and faint background galaxies. Reliable strong lensing (SL) models are crucial for determining the intrinsic properties of distant, magnified sources and for constructing their luminosity function. We present here the first SL analysis of MACS J0308.9+2645 and PLCK G171.9-40.7, two massive galaxy clusters imaged with the Hubble Space Telescope in the framework of the Reionization Lensing Cluster Survey (RELICS). We use the Light-Traces-Mass modeling technique to uncover sets of multiply imaged galaxies and constrain the mass distribution of the clusters. Our SL analysis reveals that both clusters have particularly large Einstein radii ($theta_E>30$ for a source redshift of $z_s=2$), providing fairly large areas with high magnifications, useful for high-redshift galaxy searches ($sim2$ arcmin$^{2}$ with $mu>5$ to $sim1$ arcmin$^{2}$ with $mu>10$, similar to a typical textit{Hubble Frontier Fields} cluster). We also find that MACS J0308.9+2645 hosts a promising, apparently bright (J$sim23.2-24.6$ AB), multiply imaged high-redshift candidate at $zsim6.4$. These images are amongst the brightest high-redshift candidates found in RELICS. Our mass models, including magnification maps, are made publicly available for the community through the Mikulski Archive for Space Telescopes.
Galaxy clusters undergo mergers that can generate extended radio sources called radio relics. Radio relics are the consequence of merger-induced shocks that propagate in the intra cluster medium (ICM). In this paper we analyse the radio, optical and X-ray data from a candidate galaxy cluster that has been selected from the radio emission coming from a candidate radio relic detected in NRAO VLA Sky Survey (NVSS). Our aim is to clarify the nature of this source and prove that under certain conditions radio emission from radio relics can be used to trace relatively low-mass galaxy clusters. We have observed the candidate galaxy cluster with the Giant Meterwave Radio Telescope (GMRT) at three different frequencies. These datasets have been analysed together with archival data from ROSAT in the X-ray and with archival data from the Gamma-Ray Burst Optical/Near-Infrared Detector (GROND) telescope in four different optical bands. We confirm the presence of a 1 Mpc long radio relic located in the outskirts of a previously unknown galaxy cluster. We confirm the presence of the galaxy cluster through dedicated optical observations and using archival X-ray data. Due to its proximity and similar redshift to a known Abell cluster, we named it: Abell 3527-bis. The galaxy cluster is among the least massive cluster known to host a radio relic. We showed that radio relics can be effectively used to trace a subset of relatively low-mass galaxy clusters that might have gone undetected in X-ray or Sunyaev-Zeldovich (SZ) surveys. This technique might be used in future deep, low-frequency surveys as those carried on by LOFAR, uGMRT and, ultimately, SKA.
In this paper we present results from a radio-optical study of the galaxy populations of the galaxy clusters Abell 1300 and MACS J1931.8$-$2634, a merger and a relaxed system respectively both located at $z sim 0.3$, aimed at finding evidence of merger-induced radio emission. Radio observations are taken at 1.28 GHz with the MeerKAT interferometer during its early-stage commissioning phase, and combined with archive optical data. We generated catalogues containing 107 and 162 radio sources in the A$~$1300 and MACS J1931.8--2634 cluster fields respectively, above a 0.2 mJy threshold and within a 30~arcmin radius from the cluster centre (corresponding to 8.1 and 8.8 Mpc respectively). By cross-correlating the radio and optical catalogues, and including spectroscopic information, 9 and 6 sources were found to be cluster members and used to construct the radio luminosity functions respectively for both clusters. The comparison of the radio source catalogues between the two cluster fields leads to a marginal difference, with a $2sigma$ statistical significance. We derived the radio luminosity function at 1.28 GHz in both clusters, in the power range $22.81 < rm {log~P_{1.28~GHz}~(W/Hz)} < 25.95$, and obtained that in A 1300 the radio luminosity function averaged over the full radio power interval is only $3.3 pm 1.9$ times higher than the MACS J1931.8--2634 one, suggesting no statistical difference in their probability to host nuclear radio emission. We conclude that, at least for the two clusters studied here, the role of cluster mergers in affecting the statistical properties of the radio galaxy population is negligible.
Strong gravitational lensing by clusters of galaxies probes the mass distribution at the core of each cluster and magnifies the universe behind it. MACS J0417.5-1154 at z=0.443 is one of the most massive clusters known based on weak lensing, X-ray, and Sunyaev-Zeldovich analyses. Here we compute a strong lens model of MACS J0417 based on Hubble Space Telescope imaging observations collected, in part, by the Reionization Lensing Cluster Survey (RELICS), and recently reported spectroscopic redshifts from the MUSE instrument on the Very Large Telescope (VLT). We measure an Einstein radius of ThetaE=36 at z = 9 and a mass projected within 200 kpc of M(200 kpc) = 1.78+0.01-0.03x10**14Msol. Using this model, we measure a ratio between the mass attributed to cluster-member galaxy halos and the main cluster halo of order 1:100. We assess the probability to detect magnified high-redshift galaxies in the field of this cluster, both for comparison with RELICS HST results and as a prediction for the James Webb Space Telescope (JWST) Guaranteed Time Observations upcoming for this cluster. Our lensing analysis indicates that this cluster has similar lensing strength to other clusters in the RELICS program. Our lensing analysis predicts a detection of at least a few z~6-8 galaxies behind this cluster, at odds with a recent analysis that yielded no such candidates in this field. Reliable strong lensing models are crucial for accurately predicting the intrinsic properties of lensed galaxies. As part of the RELICS program, our strong lensing model produced with the Lenstool parametric method is publicly available through the Mikulski Archive for Space Telescopes (MAST).
[abridged] We present a strong-lensing analysis of MACSJ0717.5+3745, based on the full depth of the Hubble Frontier Field (HFF) observations, which brings the number of multiply imaged systems to 61, ten of which are spectroscopically confirmed. The total number of images comprised in these systems rises to 165. Our analysis uses a parametric mass reconstruction technique, as implemented in the Lenstool software, to constrain a mass distribution composed of four large-scale mass components + galaxy-scale perturbers. We find a superposition of cored isothermal mass components to provide a good fit to the observational constraints, resulting in a very shallow mass distribution for the smooth (large-scale) component. Given the implications of such a flat mass profile, we investigate whether a model composed of peaky non-cored mass components can also reproduce the observational constraints. We find that such a non-cored mass model reproduces the observational constraints equally well. Although the total mass distributions of both models are consistent, as well as the integrated two dimensional mass profiles, we find that the smooth and the galaxy-scale components are very different. We conclude that, even in the HFF era, the generic degeneracy between smooth and galaxy-scale components is not broken, in particular in such a complex galaxy cluster. Consequently, insights into the mass distribution of MACS J0717 remain limited, underlining the need for additional probes beyond strong lensing. Our findings also have implications for estimates of the lensing magnification: we show that the amplification difference between the two models is larger than the error associated with either model. This uncertainty decreases the area of the image plane where we can reliably study the high-redshift Universe by 50 to 70%.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا