Do you want to publish a course? Click here

A congested schedule-based dynamic transit passenger flow estimator using stop count data

75   0   0.0 ( 0 )
 Added by Joseph Chow
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

A dynamic transit flow estimation model based on congested schedule-based transit equilibrium assignment is proposed using observations from stop count data. A solution algorithm is proposed for the mathematical program with schedule-based transit equilibrium constraints (MPEC) with polynomial computational complexity. The equilibrium constraints corresponding to the schedule-based hyperpath flow are modified from the literature to fit into an estimation problem. Computational experiments are conducted first to verify the methodology with two synthetic data sets (one of which is Sioux Falls), followed by a validation of the method using bus data from Qingpu District in Shanghai, China, with 4 bus lines, 120 segments, 55 bus stops, and 120 one-minute intervals. The estimation model converged to 0.005 tolerance of relative change in 10 iterations. The estimated average of segment flows are only 2.5% off from the average of the observed segment flows; relative errors among segments are 42.5%.

rate research

Read More

This paper proposes a macroscopic model to describe the equilibrium distribution of passenger arrivals for the morning commute problem in a congested urban rail transit system. We employ a macroscopic train operation sub-model developed by Seo et al. (2017a,b) to express the interaction between dynamics of passengers and trains in a simplified manner while maintaining their essential physical relations. We derive the equilibrium conditions of the proposed model and discuss the existence of equilibrium. The characteristics of the equilibrium are then examined through numerical examples under different passenger demand settings. As an application of the proposed model, we finally analyze a simple time-dependent timetable optimization problem with equilibrium constraints and show that there exists a capacity increasing paradox in which a higher dispatch frequency can increase the equilibrium cost. Further insights into the design of the timetable and its influence on passengers equilibrium travel costs are also obtained.
373 - Ahmad El Shoghri 2020
Outbreaks of infectious diseases present a global threat to human health and are considered a major health-care challenge. One major driver for the rapid spatial spread of diseases is human mobility. In particular, the travel patterns of individuals determine their spreading potential to a great extent. These travel behaviors can be captured and modelled using novel location-based data sources, e.g., smart travel cards, social media, etc. Previous studies have shown that individuals who cannot be characterized by their most frequently visited locations spread diseases farther and faster; however, these studies are based on GPS data and mobile call records which have position uncertainty and do not capture explicit contacts. It is unclear if the same conclusions hold for large scale real-world transport networks. In this paper, we investigate how mobility patterns impact disease spread in a large-scale public transit network of empirical data traces. In contrast to previous findings, our results reveal that individuals with mobility patterns characterized by their most frequently visited locations and who typically travel large distances pose the highest spreading risk.
Transit ridership flow and origin-destination (O-D) information is essential for enhancing transit network design, optimizing transit route and improving service. The effectiveness and preciseness of the traditional survey-based and smart card data-driven method for O-D information inference have multiple disadvantages due to the insufficient sample, the high time and energy cost, and the lack of inferring results validation. By considering the ubiquity of smart mobile devices in the world, several methods were developed for estimating the transit ridership flow from Wi-Fi and Bluetooth sensing data by filtering out the non-passenger MAC addresses based on the predefined thresholds. However, the accuracy of the filtering methods is still questionable for the indeterminate threshold values and the lack of quantitative results validation. By combining the consideration of the assumed overlapped feature space of passenger and non-passenger with the above concerns, a three steps data-driven method for estimating transit ridership flow and O-D information from Wi-Fi and Bluetooth sensing data is proposed in this paper. The observed ridership flow is used as ground truth for calculating the performance measurements. According to the results, the proposed approach outperformed all selected baseline models and existing filtering methods. The findings of this study can help to provide real-time and precise transit ridership flow and O-D information for supporting transit vehicle management and the quality of service enhancement.
Short-term passenger flow forecasting is an essential component in urban rail transit operation. Emerging deep learning models provide good insight into improving prediction precision. Therefore, we propose a deep learning architecture combining the residual network (ResNet), graph convolutional network (GCN), and long short-term memory (LSTM) (called ResLSTM) to forecast short-term passenger flow in urban rail transit on a network scale. First, improved methodologies of the ResNet, GCN, and attention LSTM models are presented. Then, the model architecture is proposed, wherein ResNet is used to capture deep abstract spatial correlations between subway stations, GCN is applied to extract network topology information, and attention LSTM is used to extract temporal correlations. The model architecture includes four branches for inflow, outflow, graph-network topology, as well as weather conditions and air quality. To the best of our knowledge, this is the first time that air-quality indicators have been taken into account, and their influences on prediction precision quantified. Finally, ResLSTM is applied to the Beijing subway using three time granularities (10, 15, and 30 min) to conduct short-term passenger flow forecasting. A comparison of the prediction performance of ResLSTM with those of many state-of-the-art models illustrates the advantages and robustness of ResLSTM. Moreover, a comparison of the prediction precisions obtained for time granularities of 10, 15, and 30 min indicates that prediction precision increases with increasing time granularity. This study can provide subway operators with insight into short-term passenger flow forecasting by leveraging deep learning models.
Despite abundant accessible traffic data, researches on traffic flow estimation and optimization still face the dilemma of detailedness and integrity in the measurement. A dataset of city-scale vehicular continuous trajectories featuring the finest resolution and integrity, as known as the holographic traffic data, would be a breakthrough, for it could reproduce every detail of the traffic flow evolution and reveal the personal mobility pattern within the city. Due to the high coverage of Automatic Vehicle Identification (AVI) devices in Xuancheng city, we constructed one-month continuous trajectories of daily 80,000 vehicles in the city with accurate intersection passing time and no travel path estimation bias. With such holographic traffic data, it is possible to reproduce every detail of the traffic flow evolution. We presented a set of traffic flow data based on the holographic trajectories resampling, covering the whole 482 road segments in the city round the clock, including stationary average speed and flow data of 5-minute intervals and dynamic floating car data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا