Do you want to publish a course? Click here

Morning commute in congested urban rail transit system: A macroscopic model for equilibrium distribution of passenger arrivals

393   0   0.0 ( 0 )
 Added by Kentaro Wada
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper proposes a macroscopic model to describe the equilibrium distribution of passenger arrivals for the morning commute problem in a congested urban rail transit system. We employ a macroscopic train operation sub-model developed by Seo et al. (2017a,b) to express the interaction between dynamics of passengers and trains in a simplified manner while maintaining their essential physical relations. We derive the equilibrium conditions of the proposed model and discuss the existence of equilibrium. The characteristics of the equilibrium are then examined through numerical examples under different passenger demand settings. As an application of the proposed model, we finally analyze a simple time-dependent timetable optimization problem with equilibrium constraints and show that there exists a capacity increasing paradox in which a higher dispatch frequency can increase the equilibrium cost. Further insights into the design of the timetable and its influence on passengers equilibrium travel costs are also obtained.



rate research

Read More

Short-term passenger flow forecasting is an essential component in urban rail transit operation. Emerging deep learning models provide good insight into improving prediction precision. Therefore, we propose a deep learning architecture combining the residual network (ResNet), graph convolutional network (GCN), and long short-term memory (LSTM) (called ResLSTM) to forecast short-term passenger flow in urban rail transit on a network scale. First, improved methodologies of the ResNet, GCN, and attention LSTM models are presented. Then, the model architecture is proposed, wherein ResNet is used to capture deep abstract spatial correlations between subway stations, GCN is applied to extract network topology information, and attention LSTM is used to extract temporal correlations. The model architecture includes four branches for inflow, outflow, graph-network topology, as well as weather conditions and air quality. To the best of our knowledge, this is the first time that air-quality indicators have been taken into account, and their influences on prediction precision quantified. Finally, ResLSTM is applied to the Beijing subway using three time granularities (10, 15, and 30 min) to conduct short-term passenger flow forecasting. A comparison of the prediction performance of ResLSTM with those of many state-of-the-art models illustrates the advantages and robustness of ResLSTM. Moreover, a comparison of the prediction precisions obtained for time granularities of 10, 15, and 30 min indicates that prediction precision increases with increasing time granularity. This study can provide subway operators with insight into short-term passenger flow forecasting by leveraging deep learning models.
Short-term passenger flow forecasting is a crucial task for urban rail transit operations. Emerging deep-learning technologies have become effective methods used to overcome this problem. In this study, the authors propose a deep-learning architecture called Conv-GCN that combines a graph convolutional network (GCN) and a three-dimensional (3D) convolutional neural network (3D CNN). First, they introduce a multi-graph GCN to deal with three inflow and outflow patterns (recent, daily, and weekly) separately. Multi-graph GCN networks can capture spatiotemporal correlations and topological information within the entire network. A 3D CNN is then applied to deeply integrate the inflow and outflow information. High-level spatiotemporal features between different inflow and outflow patterns and between stations that are nearby and far away can be extracted by 3D CNN. Finally, a fully connected layer is used to output results. The Conv-GCN model is evaluated on smart card data of the Beijing subway under the time interval of 10, 15, and 30 min. Results show that this model yields the best performance compared with seven other models. In terms of the root-mean-square errors, the performances under three time intervals have been improved by 9.402, 7.756, and 9.256%, respectively. This study can provide critical insights for subway operators to optimise urban rail transit operations.
While the topic of mean-field games (MFGs) has a relatively long history, heretofore there has been limited work concerning algorithms for the computation of equilibrium control policies. In this paper, we develop a computable policy iteration algorithm for approximating the mean-field equilibrium in linear-quadratic MFGs with discounted cost. Given the mean-field, each agent faces a linear-quadratic tracking problem, the solution of which involves a dynamical system evolving in retrograde time. This makes the development of forward-in-time algorithm updates challenging. By identifying a structural property of the mean-field update operator, namely that it preserves sequences of a particular form, we develop a forward-in-time equilibrium computation algorithm. Bounds that quantify the accuracy of the computed mean-field equilibrium as a function of the algorithms stopping condition are provided. The optimality of the computed equilibrium is validated numerically. In contrast to the most recent/concurrent results, our algorithm appears to be the first to study infinite-horizon MFGs with non-stationary mean-field equilibria, though with focus on the linear quadratic setting.
A dynamic transit flow estimation model based on congested schedule-based transit equilibrium assignment is proposed using observations from stop count data. A solution algorithm is proposed for the mathematical program with schedule-based transit equilibrium constraints (MPEC) with polynomial computational complexity. The equilibrium constraints corresponding to the schedule-based hyperpath flow are modified from the literature to fit into an estimation problem. Computational experiments are conducted first to verify the methodology with two synthetic data sets (one of which is Sioux Falls), followed by a validation of the method using bus data from Qingpu District in Shanghai, China, with 4 bus lines, 120 segments, 55 bus stops, and 120 one-minute intervals. The estimation model converged to 0.005 tolerance of relative change in 10 iterations. The estimated average of segment flows are only 2.5% off from the average of the observed segment flows; relative errors among segments are 42.5%.
The effectiveness of rapid rail transit system is analyzed using tools of complex network for the first time. We evaluated the effectiveness of the system in Beijing quantitatively from different perspectives, including descriptive statistics analysis, bridging property, centrality property, ability of connecting different part of the system and ability of disease spreading. The results showed that the public transport of Beijing does benefit from the rapid rail transit lines, but there is still room to improve. The paper concluded with some policy suggestions regarding how to promote the system. This study offered significant insight that can help understand the public transportation better. The methodology can be easily applied to analyze other urban public systems, such as electricity grid, water system, to develop more livable cities.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا