Do you want to publish a course? Click here

Rayleigh wave propagation in nonlinear metasurfaces

49   0   0.0 ( 0 )
 Added by Behrooz Yousefzadeh
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the propagation of Rayleigh waves in a half-space coupled to a nonlinear metasurface. The metasurface consists of an array of nonlinear oscillators attached to the free surface of a homogeneous substrate. We describe, analytically and numerically, the effects of nonlinear interaction force and energy loss on the dispersion of Rayleigh waves. We develop closed-form expressions to predict the dispersive characteristics of nonlinear Rayleigh waves by adopting a leading-order effective medium description. In particular, we demonstrate how hardening nonlinearity reduces and eventually eliminates the linear filtering bandwidth of the metasurface. Softening nonlinearity, in contrast, induces lower and broader spectral gaps for weak to moderate strengths of nonlinearity, and narrows and eventually closes the gaps at high strengths of nonlinearity. We also observe the emergence of a spatial gap (in wavenumber) in the in-phase branch of the dispersion curves for softening nonlinearity. Finally, we investigate the interplay between nonlinearity and energy loss and discuss their combined effects on the dispersive properties of the metasurface. Our analytical results, supported by finite element simulations, demonstrate the mechanisms for achieving tunable dispersion characteristics in nonlinear metasurfaces.



rate research

Read More

Nonlinear nanostructured surfaces provide a paradigm shift in nonlinear optics with new ways to control and manipulate frequency conversion processes at the nanoscale, also offering novel opportunities for applications in photonics, chemistry, material science, and biosensing. Here, we develop a general approach to employ sharp resonances in metasurfaces originated from the physics of bound states in the continuum for both engineering and enhancing the nonlinear response. We study experimentally the third-harmonic generation from metasurfaces composed of symmetry-broken silicon meta-atoms and reveal that the harmonic generation intensity depends critically on the asymmetry parameter. We employ the concept of the critical coupling of light to the metasurface resonances to uncover the effect of radiative and nonradiative losses on the nonlinear conversion efficiency.
Electromagnetic metasurfaces enable the advanced control of surface-wave propagation by spatially tailoring the local surface reactance. Interestingly, tailoring the surface resistance distribution in space provides new, largely unexplored degrees of freedom. Here, we show that suitable spatial modulations of the surface resistance between positive (i.e., loss) and negative (i.e., gain) values can induce peculiar dispersion effects, far beyond a mere compensation. Taking inspiration from the parity-time symmetry concept in quantum physics, we put forward and explore a class of non-Hermitian metasurfaces that may exhibit extreme anisotropy mainly induced by the gain-loss interplay. Via analytical modeling and full-wave numerical simulations, we illustrate the associated phenomenon of surface-wave canalization, explore nonlocal effects and possible departures from the ideal conditions, and address the feasibility of the required constitutive parameters. Our results suggest intriguing possibilities to dynamically reconfigure the surface-wave propagation, and are of potential interest for applications to imaging, sensing and communications.
Collagen is the key protein of connective tissue (i.e., skin, tendons and ligaments, cartilage, among others) accounting for 25% to 35% of the whole-body protein content, and entitled of conferring mechanical stability. This protein is also a fundamental building block of bone due to its excellent mechanical properties together with carbonated hydroxyapatite minerals. While the mechanical resilience and viscoelasticity have been studied both in vitro and in vivo from the molecule to tissue level, wave propagation properties and energy dissipation have not yet been deeply explored, in spite of being crucial to understand the vibration dynamics of collagenous structures (e.g., eardrum, cochlear membranes) upon impulsive loads. By using a bottom-up atomistic modelling approach, here we study a collagen peptide under two distinct impulsive displacement loads, including longitudinal and transversal inputs. Using a one-dimensional string model as a model system, we investigate the roles of hydration and load direction on wave propagation along the collagen peptide and the related energy dissipation. We find that wave transmission and energy-dissipation strongly depend on the loading direction. Also, the hydrated collagen peptide can dissipate five times more energy than dehydrated one. Our work suggests a distinct role of collagen in term of wave transmission of different tissues such as tendon and eardrum. This study can step towards understanding the mechanical behaviour of collagen upon transient loads, impact loading and fatigue, and designing biomimetic and bio-inspired materials to replace specific native tissues such as the tympanic membrane.
Inhomogeneous metasurfaces have shown possibilities for unprecedented control of wave propagation and scattering. While it is conventional to shine a single incident plane wave from one side of these metastructures, illuminating by several waves simultaneously from both sides may enhance possibilities to control scattered waves, which results in additional functionalities and novel applications. Here, we unveil how using coherent plane-wave illumination of a properly designed inhomogeneous metasurface sheet it is possible to realize controllable retroreflection. We call these metasurfaces as coherent retroreflectors and explain the method for realizing them both in theory and practice. We show that coherent retroreflectors can be used for filtering undesired modes and creation of field-localization regions in waveguides. The latter application is in resemblance to bound states in the radiation continuum.
We introduce the concept of nonlinear graphene metasurfaces employing the controllable interaction between a graphene layer and a planar metamaterial. Such hybrid metasurfaces support two types of subradiant resonant modes, asymmetric modes of structured metamaterial elements (metamolecules) and graphene plasmons exhibiting strong mutual coupling and avoided dispersion crossing. High tunability of graphene plasmons facilitates strong interaction between the subradiant modes, modifying the spectral position and lifetime of the associated Fano resonances. We demonstrate that strong resonant interaction, combined with the subwavelength localization of plasmons, leads to the enhanced nonlinear response and high efficiency of the second-harmonic generation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا