No Arabic abstract
Computational fluid dynamics is a direct modeling of physical laws in a discretized space. The basic physical laws include the mass, momentum and energy conservations, physically consistent transport process, and similar domain of dependence and influence between the physical reality and the numerical representation. Therefore, a physically soundable numerical scheme must be a compact one which involves the closest neighboring cells within the domain of dependence for the solution update under a CFL number $(sim 1 )$. In the construction of explicit high-order compact scheme, subcell flow distributions or the equivalent degree of freedoms beyond the cell averaged flow variables must be evolved and updated, such as the gradients of the flow variables inside each control volume. The direct modeling of flow evolution under generalized initial condition will be developed in this paper. The direct modeling will provide the updates of flow variables differently on both sides of a cell interface and limit high-order time derivatives of the flux function nonlinearly in case of discontinuity in time, such as a shock wave moving across a cell interface within a time step. The direct modeling unifies the nonlinear limiters in both space for the data reconstruction and time for the time-dependent flux transport. Under the direct modeling framework, as an example, the high-order compact gas-kinetic scheme (GKS) will be constructed. The scheme shows significant improvement in terms of robustness, accuracy, and efficiency in comparison with the previous high-order compact GKS.
Capillary phenomena are involved in many industrial processes, especially those dealing with composite manufacturing. However, their modelling is still challenging. Therefore, a finite element setting is proposed to better investigate this complex issue. The variational formulation of a liquid-air Stokes system is established, while the solid substrate is described through boundary conditions. Expressing the weak form of Laplaces law over liquid-air, liquid-solid and air-solid interfaces, leads to a natural enforcement of the mechanical equilibrium over the wetting line, without imposing explicitly the contact angle itself. The mechanical problem is discretized by using finite elements, linear both in velocity and pressure, stabilized with a variational multiscale method, including the possibility of enrichment of the pressure space. The moving interface is captured by a Level-Set methodology, combined with a mesh adaptation technique with respect to both pressure and level-set fields. Our methodology can simulate capillary-driven flows in 2D and 3D with the desired precision: droplet spreading, droplet coalescence, capillary rise. In each case, the equilibrium state expected in terms of velocity, pressure and contact angle is reached.
A two-fluid Discrete Boltzmann Model(DBM) for compressible flows based on Ellipsoidal Statistical Bhatnagar-Gross-Krook(ES-BGK) is presented. The model has flexible Prandtl number or specific heat ratio. Mathematically, the model is composed of two coupled Discrete Boltzmann Equations(DBE). Each DBE describes one component of the fluid. Physically, the model is equivalent to a macroscopic fluid model based on Navier-Stokes(NS) equations, and supplemented by a coarse-grained model for thermodynamic non-equilibrium behaviors. To obtain a flexible Prandtl number, a coefficient is introduced in the ellipsoidal statistical distribution function to control the viscosity. To obtain a flexible specific heat ratio, a parameter is introduced in the energy kinetic moments to control the extra degree of freedom. For binary mixture, the correspondence between the macroscopic fluid model and the DBM may be several-to-one. Five typical benchmark tests are used to verify and validate the model. Some interesting non-equilibrium results, which are not available in the NS model or the single-fluid DBM, are presented.
In this paper we present a fourth-order in space and time block-structured adaptive mesh refinement algorithm for the compressible multicomponent reacting Navier-Stokes equations. The algorithm uses a finite volume approach that incorporates a fourth-order discretization of the convective terms. The time stepping algorithm is based on a multi-level spectral deferred corrections method that enables explicit treatment of advection and diffusion coupled with an implicit treatment of reactions. The temporal scheme is embedded in a block-structured adaptive mesh refinement algorithm that includes subcycling in time with spectral deferred correction sweeps applied on levels. Here we present the details of the multi-level scheme paying particular attention to the treatment of coarse-fine boundaries required to maintain fourth-order accuracy in time. We then demonstrate the convergence properties of the algorithm on several test cases including both nonreacting and reacting flows. Finally we present simulations of a vitiated dimethyl ether jet in 2D and a turbulent hydrogen jet in 3D, both with detailed kinetics and transport.
In this paper, a high-order gas-kinetic scheme in general curvilinear coordinate (HGKS-cur) is developed for the numerical simulation of compressible turbulence. Based on the coordinate transformation, the Bhatnagar-Gross-Krook (BGK) equation is transformed from physical space to computational space. To deal with the general mesh given by discretized points, the geometrical metrics need to be constructed by the dimension-by-dimension Lagrangian interpolation. The multidimensional weighted essentially non-oscillatory (WENO) reconstruction is adopted in the computational domain for spatial accuracy, where the reconstructed variables are the cell averaged Jacobian and the Jacobian-weighted conservative variables. The two-stage fourth-order method, which was developed for spatial-temporal coupled flow solvers, is used for temporal discretization. The numerical examples for inviscid and laminar flows validate the accuracy and geometrical conservation law of HGKS-cur. As a direct application, HGKS-cur is implemented for the implicit large eddy simulation (iLES) in compressible wall-bounded turbulent flows, including the compressible turbulent channel flow and compressible turbulent flow over periodic hills. The iLES results with HGKS-cur are in good agreement with the refereed spectral methods and high-order finite volume methods. The performance of HGKS-cur demonstrates its capability as a powerful tool for the numerical simulation of compressible wall-bounded turbulent flows and massively separated flows.
In recent years, there have been a surge in applications of neural networks (NNs) in physical sciences. Although various algorithmic advances have been proposed, there are, thus far, limited number of studies that assess the interpretability of neural networks. This has contributed to the hasty characterization of most NN methods as black boxes and hindering wider acceptance of more powerful machine learning algorithms for physics. In an effort to address such issues in fluid flow modeling, we use a probabilistic neural network (PNN) that provide confidence intervals for its predictions in a computationally effective manner. The model is first assessed considering the estimation of proper orthogonal decomposition (POD) coefficients from local sensor measurements of solution of the shallow water equation. We find that the present model outperforms a well-known linear method with regard to estimation. This model is then applied to the estimation of the temporal evolution of POD coefficients with considering the wake of a NACA0012 airfoil with a Gurney flap and the NOAA sea surface temperature. The present model can accurately estimate the POD coefficients over time in addition to providing confidence intervals thereby quantifying the uncertainty in the output given a particular training data set.