No Arabic abstract
Capillary phenomena are involved in many industrial processes, especially those dealing with composite manufacturing. However, their modelling is still challenging. Therefore, a finite element setting is proposed to better investigate this complex issue. The variational formulation of a liquid-air Stokes system is established, while the solid substrate is described through boundary conditions. Expressing the weak form of Laplaces law over liquid-air, liquid-solid and air-solid interfaces, leads to a natural enforcement of the mechanical equilibrium over the wetting line, without imposing explicitly the contact angle itself. The mechanical problem is discretized by using finite elements, linear both in velocity and pressure, stabilized with a variational multiscale method, including the possibility of enrichment of the pressure space. The moving interface is captured by a Level-Set methodology, combined with a mesh adaptation technique with respect to both pressure and level-set fields. Our methodology can simulate capillary-driven flows in 2D and 3D with the desired precision: droplet spreading, droplet coalescence, capillary rise. In each case, the equilibrium state expected in terms of velocity, pressure and contact angle is reached.
In the theory of the Navier-Stokes equations, the viscous fluid in incompressible flow is modelled as a homogeneous and dense assemblage of constituent fluid particles with viscous stress proportional to rate of strain. The crucial concept of fluid flow is the velocity of the particle that is accelerated by the pressure and viscous interaction around it. In this paper, by virtue of the alternative constituent micro-finite element, we introduce a set of new intrinsic quantities, called the vortex fields, to characterise the relative orientation between elements and the feature of micro-eddies in the element, while the description of viscous interaction in fluid returns to the initial intuition that the interlayer friction is proportional to the slip strength. Such a framework enables us to reconstruct the dynamics theory of viscous fluid, in which the flowing fluid can be modelled as a finite covering of elements and consequently indicated by a space-time differential manifold that admits complex topological evolution.
Computational fluid dynamics is a direct modeling of physical laws in a discretized space. The basic physical laws include the mass, momentum and energy conservations, physically consistent transport process, and similar domain of dependence and influence between the physical reality and the numerical representation. Therefore, a physically soundable numerical scheme must be a compact one which involves the closest neighboring cells within the domain of dependence for the solution update under a CFL number $(sim 1 )$. In the construction of explicit high-order compact scheme, subcell flow distributions or the equivalent degree of freedoms beyond the cell averaged flow variables must be evolved and updated, such as the gradients of the flow variables inside each control volume. The direct modeling of flow evolution under generalized initial condition will be developed in this paper. The direct modeling will provide the updates of flow variables differently on both sides of a cell interface and limit high-order time derivatives of the flux function nonlinearly in case of discontinuity in time, such as a shock wave moving across a cell interface within a time step. The direct modeling unifies the nonlinear limiters in both space for the data reconstruction and time for the time-dependent flux transport. Under the direct modeling framework, as an example, the high-order compact gas-kinetic scheme (GKS) will be constructed. The scheme shows significant improvement in terms of robustness, accuracy, and efficiency in comparison with the previous high-order compact GKS.
This paper presents flow simulation results of the EUROLIFT DLR-F11 multi-element wing configuration, obtained with a highly scalable finite element solver, PHASTA. This work was accomplished as a part of the 2nd high lift prediction workshop. In-house meshes were constructed with increasing mesh density for analysis. A solution adaptive approach was used as an alternative and its effectiveness was studied by comparing its results with the ones obtained with other meshes. Comparisons between the numerical solution obtained with unsteady RANS turbulence model and available experimental results are provided for verification and discussion. Based on the observations, future direction for adaptive research and simulations with higher fidelity turbulence models is outlined.
We investigate theoretically and numerically the use of the Least-Squares Finite-element method (LSFEM) to approach data-assimilation problems for the steady-state, incompressible Navier-Stokes equations. Our LSFEM discretization is based on a stress-velocity-pressure (S-V-P) first-order formulation, using discrete counterparts of the Sobolev spaces $H({rm div}) times H^1 times L^2$ respectively. Resolution of the system is via minimization of a least-squares functional representing the magnitude of the residual of the equations. A simple and immediate approach to extend this solver to data-assimilation is to add a data-discrepancy term to the functional. Whereas most data-assimilation techniques require a large number of evaluations of the forward-simulations and are therefore very expensive, the approach proposed in this work uniquely has the same cost as a single forward run. However, the question arises: what is the statistical model implied by this choice? We answer this within the Bayesian framework, establishing the latent background covariance model and the likelihood. Further we demonstrate that - in the linear case - the method is equivalent to application of the Kalman filter, and derive the posterior covariance. We practically demonstrate the capabilities of our method on a backward-facing step case. Our LSFEM formulation (without data) is shown to have good approximation quality, even on relatively coarse meshes - in particular with respect to mass-conservation and reattachment location. Adding limited velocity measurements from experiment, we show that the method is able to correct for discretization error on very coarse meshes, as well as correct for the influence of unknown and uncertain boundary-conditions.
Immiscible fluid-fluid displacement in porous media is of great importance in many engineering applications, such as enhanced oil recovery, agricultural irrigation, and geologic CO2 storage. Fingering phenomena, induced by the interface instability, are commonly encountered during displacement processes and somehow detrimental since such hydrodynamic instabilities can significantly reduce displacement efficiency. In this study, we report a possible adjustment in pore geometry which aims to suppress the capillary fingering in porous media with hierarchical structures. Through pore-scale simulations and theoretical analysis, we demonstrate and quantify combined effects of wettability and hierarchical geometry on displacement patterns, showing a transition from fingering to compact mode. Our results suggest that with a higher porosity of the 2nd-order porous structure, the displacement can keep compact across a wider range of wettability conditions. Combined with our previous work on viscous fingering in such media, we can provide a complete insight into the fluid-fluid displacement control in hierarchical porous media, across a wide range of flow conditions from capillary- to viscous-dominated modes. The conclusions of this work can benefit the design of microfluidic devices, as well as tailoring porous media for better fluid displacement efficiency at the field scale.