No Arabic abstract
In this paper, we introduce two types of real-valued sums known as Complex Conjugate Pair Sums (CCPSs) denoted as CCPS$^{(1)}$ and CCPS$^{(2)}$, and discuss a few of their properties. Using each type of CCPSs and their circular shifts, we construct two non-orthogonal Nested Periodic Matrices (NPMs). As NPMs are non-singular, this introduces two non-orthogonal transforms known as Complex Conjugate Periodic Transforms (CCPTs) denoted as CCPT$^{(1)}$ and CCPT$^{(2)}$. We propose another NPM, which uses both types of CCPSs such that its columns are mutually orthogonal, this transform is known as Orthogonal CCPT (OCCPT). After a brief study of a few OCCPT properties like periodicity, circular shift, etc., we present two different interpretations of it. Further, we propose a Decimation-In-Time (DIT) based fast computation algorithm for OCCPT (termed as FOCCPT), whenever the length of the signal is equal to $2^v, v{in} mathbb{N}$. The proposed sums and transforms are inspired by Ramanujan sums and Ramanujan Period Transform (RPT). Finally, we show that the period (both divisor and non-divisor) and frequency information of a signal can be estimated using the proposed transforms with a significant reduction in the computational complexity over Discrete Fourier Transform (DFT).
This article proposes a novel framework for unmaned aerial vehicle (UAV) networks with massive access capability supported by non-orthogonal multiple access (NOMA). In order to better understand NOMA enabled UAV networks, three case studies are carried out. We first provide performance evaluation of NOMA enabled UAV networks by adopting stochastic geometry to model the positions of UAVs and ground users. Then we investigate the joint trajectory design and power allocation for static NOMA users based on a simplified two-dimensional (2D) model that UAV is flying around at fixed height. As a further advance, we demonstrate the UAV placement issue with the aid of machine learning techniques when the ground users are roaming and the UAVs are capable of adjusting their positions in three-dimensions (3D) accordingly. With these case studies, we can comprehensively understand the UAV systems from fundamental theory to practical implementation.
In this study, we propose an approach to constructing on-off keying (OOK) symbols for wake-up radios (WURs) by using sequences in the frequency domain. The proposed method enables orthogonal multiplexing of wake-up signals (WUSs) and orthogonal frequency division multiplexing (OFDM) waveforms. We optimize the sequences with a tractable algorithm by considering the reliability of WUSs in fading channels. The proposed algorithm relies on an alternating minimization technique, i.e. cyclic algorithm-new (CAN), which was originally proposed for obtaining a unimodular sequence with good aperiodic correlation properties. In this study, we extend CAN to generate OOK waveforms with Manchester coding. We demonstrate the performance of four optimized sequences and compare with state-of-the-art approaches. We show that the proposed scheme improves the wake-up radio receiver (WURx) performance by controlling the energy distribution in frequency domain while removing the interference-floor at the OFDM receiver.
Although routinely utilized in literature, orthogonal waveforms may lose orthogonality in distributed multi-input multi-output (MIMO) radar with spatially separated transmit (TX) and receive (RX) antennas, as the waveforms may experience distinct delays and Doppler frequency offsets unique to different TX-RX propagation paths. In such cases, the output of each waveform-specific matched filter (MF), employed to unravel the waveforms at the RXs, contains both an auto term and multiple cross terms, i.e., the filtered response of the desired and, respectively, undesired waveforms. We consider the impact of non-orthogonal waveforms and their cross terms on target detection with or without timing, frequency, and phase errors. To this end, we present a general signal model for distributed MIMO radar, examine target detection using existing coherent/non-coherent detectors and two new detectors, including a hybrid detector that requires phase coherence locally but not across distributed antennas, and provide a statistical analysis leading to closed-form expressions of false alarm and detection probabilities for all detectors. Our results show that cross terms can behave like foes or allies, respectively, if they and the auto term add destructively or constructively, depending on the propagation delay, frequency, and phase offsets. Regarding sync errors, we show that phase errors affect only coherent detectors, frequency errors degrade all but the non-coherent detector, while all are impacted by timing errors, which result in a loss in the signal-to-noise ratio (SNR).
We present new quantum codes with good parameters which are constructed from self-orthogonal algebraic geometry codes. Our method permits a wide class of curves to be used in the formation of these codes, which greatly extends the class of a previous paper due to Munuera, Tenorio and Torres. These results demonstrate that there is a lot more scope for constructing self-orthogonal AG codes than was previously known.
Orthogonal matching pursuit (OMP) is one of the mainstream algorithms for signal reconstruction/approximation. It plays a vital role in the development of compressed sensing theory, and it also acts as a driving force for the development of other heuristic methods for signal reconstruction. In this paper, we propose the so-called dynamic orthogonal matching pursuit (DOMP) and its two enhanc