Do you want to publish a course? Click here

Quantum codes from a new construction of self-orthogonal algebraic geometry codes

127   0   0.0 ( 0 )
 Added by Gary McGuire
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We present new quantum codes with good parameters which are constructed from self-orthogonal algebraic geometry codes. Our method permits a wide class of curves to be used in the formation of these codes, which greatly extends the class of a previous paper due to Munuera, Tenorio and Torres. These results demonstrate that there is a lot more scope for constructing self-orthogonal AG codes than was previously known.



rate research

Read More

Power decoding is a partial decoding paradigm for arbitrary algebraic geometry codes for decoding beyond half the minimum distance, which usually returns the unique closest codeword, but in rare cases fails to return anything. The original version decodes roughly up to the Sudan radius, while an improved version decodes up to the Johnson radius, but has so far been described only for Reed--Solomon and one-point Hermitian codes. In this paper we show how the improved version can be applied to any algebraic geometry code.
We study Algebraic Geometry codes producing quantum error-correcting codes by the CSS construction. We pay particular attention to the family of Castle codes. We show that many of the examples known in the literature in fact belong to this family of codes. We systematize these constructions by showing the common theory that underlies all of them.
Many $q$-ary stabilizer quantum codes can be constructed from Hermitian self-orthogonal $q^2$-ary linear codes. This result can be generalized to $q^{2 m}$-ary linear codes, $m > 1$. We give a result for easily obtaining quantum codes from that generalization. As a consequence we provide several new binary stabilizer quantum codes which are records according to cite{codet} and new $q$-ary ones, with $q eq 2$, improving others in the literature.
In this paper, a criterion of MDS Euclidean self-orthogonal codes is presented. New MDS Euclidean self-dual codes and self-orthogonal codes are constructed via this criterion. In particular, among our constructions, for large square $q$, about $frac{1}{8}cdot q$ new MDS Euclidean (almost) self-dual codes over $F_q$ can be produced. Moreover, we can construct about $frac{1}{4}cdot q$ new MDS Euclidean self-orthogonal codes with different even lengths $n$ with dimension $frac{n}{2}-1$.
We present an introduction to the theory of algebraic geometry codes. Starting from evaluation codes and codes from order and weight functions, special attention is given to one-point codes and, in particular, to the family of Castle codes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا