No Arabic abstract
In this article, we explore the geodesics motion of neutral test particles and the process of energy extraction from a regular rotating Hayward black hole. We analyse the effect of spin, as well as deviation parameter g, on ergoregion, event horizon and static limit of the said black hole. By making use of geodesic equations on the equatorial plane, we determine the innermost stable circular and photon orbits. Moreover, we investigate the effective potentials and effective force to have information on motion and the stability of circular orbits. On studying the negative energy states, we figure out the energy limits of Penrose mechanism. Using Penrose mechanism, we found expression for the efficiency of energy extraction and observed that both spin and deviation parameters, contribute to the efficiency of energy extraction. Finally, the obtained results are compared with that acquired from Kerr and braneworld Kerr black holes.
We study the motion of a charged particle around a weakly magnetized rotating black hole. We classify the fate of a charged particle kicked out from the innermost stable circular orbit. We find that the final fate of the charged particle depends mostly on the energy of the particle and the radius of the orbit. The energy and the radius in turn depend on the initial velocity, the black hole spin, and the magnitude of the magnetic field. We also find possible evidence for the existence of bound motion in the vicinity of the equatorial plane.
The Painleve-Gullstrand coordinates allow us to explore the interior of the regular Hayward black hole. The behavior of an infalling particle in traversing the Hayward black hole is compared with the one inside the Schwarzschild and Reissner-Nordstrom singular black holes. When approaching the origin the test particle trajectories present differences depending if the center is regular or singular. The velocities of the infalling test particle into the modified Hayward black hole are analyzed as well. As compared with the normal Hayward, in the modified Hayward black hole the particle moves faster and the surface gravity is smaller.
In this paper we study geodesic motion around a distorted Schwarzschild black hole. We consider both timelike and null geodesics which are confined to the black holes equatorial plane. Such geodesics generically exist if the distortion field has only even interior multipole moments and so the field is symmetric with respect to the equatorial plane. We specialize to the case of distortions defined by a quadrupole Weyl moment. An analysis of the effective potential for equatorial timelike geodesics shows that finite stable orbits outside the black hole are possible only for $qin(q_{text{min}}, q_{text{max}}]$, where $q_{text{min}}approx-0.0210$ and $q_{text{max}}approx2.7086times10^{-4}$, while for null equatorial geodesics a finite stable orbit outside the black hole is possible only for $qin[q_{text{min}},0)$. Moreover, the innermost stable circular orbits (ISCOs) are closer to the distorted black hole horizon than those of an undistorted Schwarzschild black hole for $qin(q_{text{min}},0)$ and a null ISCO exists for $q=q_{text{min}}$. These results shows that an external distortion of a negative and sufficiently small quadrupole moment tends to stabilize motion of massive particles and light.
We analyze rigidly rotating Nambu--Goto strings in the Kerr spacetime, particularly focusing on the strings sticking in the horizon. From the regularity on the horizon, we find the condition for sticking in the horizon, which is consistent with the second law of the black hole thermodynamics. Energy extraction through the sticking string from a Kerr black hole occurs. We obtain the maximum value of the luminosity of the energy extraction.
In this article, we study the circular motion of particles and the well-known Penrose mechanism around a Kerr-Newman-Kasuya black hole spacetime. The inner and outer horizons, as well as ergosurfaces of the said black hole, are briefly examined under the effect of spin and dyonic charge. Moreover, by limiting our exploration to the equatorial plane, we discuss the characteristics of circular geodesics and investigate both photons, as well as marginally stable circular orbits. It is noted that black hole charge diminishing the radii of photon and marginally stable circular orbits. To investigate the nature of particle dynamics, we studied the effective potential and Lyapunov exponent. While inspecting the process of energy extraction, we derived the Wald inequality, which can help us to locate the energy limits of the Penrose process. Furthermore, we have found expressions for the negative energy states and the efficiency of energy extraction. The obtained result illustrates that both black hole rotation and dyonic charge contributes to the efficiency of energy extraction.