We study the motion of a charged particle around a weakly magnetized rotating black hole. We classify the fate of a charged particle kicked out from the innermost stable circular orbit. We find that the final fate of the charged particle depends mostly on the energy of the particle and the radius of the orbit. The energy and the radius in turn depend on the initial velocity, the black hole spin, and the magnitude of the magnetic field. We also find possible evidence for the existence of bound motion in the vicinity of the equatorial plane.
In a recent work of Wu, Wang, Sun and Liu, a second-order explicit symplectic integrator was proposed for the integrable Kerr spacetime geometry. It is still suited for simulating the nonintegrable dynamics of charged particles moving around the Kerr black hole embedded in an external magnetic field. Its successful construction is due to the contribution of a time transformation. The algorithm exhibits a good long-term numerical performance in stable Hamiltonian errors and computational efficiency. As its application, the dynamics of order and chaos of charged particles is surveyed. In some circumstances, an increase of the dragging effects of the spacetime seems to weaken the extent of chaos from the global phase-space structure on Poincare sections. However, an increase of the magnetic parameter strengthens the chaotic properties. On the other hand, fast Lyapunov indicators show that there is no universal rule for the dependence of the transition between different dynamical regimes on the black hole spin. The dragging effects of the spacetime do not always weaken the extent of chaos from a local point of view.
In this article, we explore the geodesics motion of neutral test particles and the process of energy extraction from a regular rotating Hayward black hole. We analyse the effect of spin, as well as deviation parameter g, on ergoregion, event horizon and static limit of the said black hole. By making use of geodesic equations on the equatorial plane, we determine the innermost stable circular and photon orbits. Moreover, we investigate the effective potentials and effective force to have information on motion and the stability of circular orbits. On studying the negative energy states, we figure out the energy limits of Penrose mechanism. Using Penrose mechanism, we found expression for the efficiency of energy extraction and observed that both spin and deviation parameters, contribute to the efficiency of energy extraction. Finally, the obtained results are compared with that acquired from Kerr and braneworld Kerr black holes.
We study the innermost stable circular orbit (ISCO) of a spinning test particle moving in the vicinity of an axially symmetric rotating braneworld black hole (BH). We start with the description of the event horizon, static limit surface and ergosphere region of such BH and bring out the effect of tidal charge parameter on ergosphere. It is found that the ISCO of rotating braneworld BH is very sensitive to braneworld BH parameter C (also known as tidal charge parameter) in addition to its rotation parameter. We further discovered that the orbital radius of the spinning test particles changes non monotonously with the braneworld BH tidal charge parameter. It is found that for rotating braneworld BH the allowed range of the particle spin grows as the tidal charge parameter C decreases, in contrast with the Kerr Newman BH. We also found the similar behavior of the particles spin for the braneworld Reissner Nordstrom (C < 0) BH in contrast with its counterpart having (C > 0).
Motivated by possible existence of stringy axions with ultralight mass, we study the behavior of an axion field around a rapidly rotating black hole (BH) obeying the sine-Gordon equation by numerical simulations. Due to superradiant instability, the axion field extracts the rotational energy of the BH and the nonlinear self-interaction becomes important as the field grows larger. We present clear numerical evidences that the nonlinear effect leads to a collapse of the axion cloud and a subsequent explosive phenomena, which is analogous to the bosenova observed in experiments of Bose-Einstein condensate. The criterion for the onset of the bosenova collapse is given. We also discuss the reason why the bosenova happens by constructing an effective theory of a wavepacket model under the nonrelativistic approximation.
The recent opening of gravitational wave astronomy has shifted the debate about black hole mimickers from a purely theoretical arena to a phenomenological one. In this respect, missing a definitive quantum gravity theory, the possibility to have simple, meta-geometries describing in a compact way alternative phenomenologically viable scenarios is potentially very appealing. A recently proposed metric by Simpson and Visser is exactly an example of such meta-geometry describing, for different values of a single parameter, different non-rotating black hole mimickers. Here, we employ the Newman--Janis procedure to construct a rotating generalisation of such geometry. We obtain a stationary, axially symmetric metric that depends on mass, spin and an additional real parameter $ell$. According to the value of such parameter, the metric may represent a rotating traversable wormhole, a rotating regular black hole with one or two horizons, or three more limiting cases. By studying the internal and external rich structure of such solutions, we show that the obtained metric describes a family of interesting and simple regular geometries providing viable Kerr black hole mimickers for future phenomenological studies.