Do you want to publish a course? Click here

The region interior to the event horizon of the Regular Hayward Black Hole

233   0   0.0 ( 0 )
 Added by Nora Breton
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Painleve-Gullstrand coordinates allow us to explore the interior of the regular Hayward black hole. The behavior of an infalling particle in traversing the Hayward black hole is compared with the one inside the Schwarzschild and Reissner-Nordstrom singular black holes. When approaching the origin the test particle trajectories present differences depending if the center is regular or singular. The velocities of the infalling test particle into the modified Hayward black hole are analyzed as well. As compared with the normal Hayward, in the modified Hayward black hole the particle moves faster and the surface gravity is smaller.



rate research

Read More

In this article, we explore the geodesics motion of neutral test particles and the process of energy extraction from a regular rotating Hayward black hole. We analyse the effect of spin, as well as deviation parameter g, on ergoregion, event horizon and static limit of the said black hole. By making use of geodesic equations on the equatorial plane, we determine the innermost stable circular and photon orbits. Moreover, we investigate the effective potentials and effective force to have information on motion and the stability of circular orbits. On studying the negative energy states, we figure out the energy limits of Penrose mechanism. Using Penrose mechanism, we found expression for the efficiency of energy extraction and observed that both spin and deviation parameters, contribute to the efficiency of energy extraction. Finally, the obtained results are compared with that acquired from Kerr and braneworld Kerr black holes.
In this article, we study Beltrami equilibria for plasmas in near the horizon of a spinning black hole, and develop a framework for constructing the magnetic field profile in the near horizon limit for Clebsch flows in the single-fluid approximation. We find that the horizon profile for the magnetic field is shown to satisfy a system of first-order coupled ODEs dependent on a boundary condition for the magnetic field. For states in which the generalized vorticity vanishes (the generalized `superconducting plasma state), the horizon profile becomes independent of the boundary condition, and depend only on the thermal properties of the plasma. Our analysis makes use of the full form for the time-independent Amperes law in the 3+1 formalism, generalizing earlier conclusions for the case of vanishing vorticity, namely the complete magnetic field expulsion near the equator of an axisymmetric black horizon assuming that the thermal properties of the plasma are symmetric about the equatorial plane. For the general case, we find and discuss additional conditions required for the expulsion of magnetic fields at given points on the black hole horizon. We perform a length scale analysis which indicates the emergence of two distinct length scales characterizing the magnetic field variation and strength of the Beltrami term, respectively.
We find strong numerical evidence for a new phenomenon in a binary black hole spacetime, namely the merger of marginally outer trapped surfaces (MOTSs). By simulating the head-on collision of two non-spinning unequal mass black holes, we observe that the MOTS associated with the final black hole merges with the two initially disjoint surfaces corresponding to the two initial black holes. This yields a connected sequence of MOTSs interpolating between the initial and final state all the way through the non-linear binary black hole merger process. In addition, we show the existence of a MOTS with self-intersections formed immediately after the merger. This scenario now allows us to track physical quantities (such as mass, angular momentum, higher multipoles, and fluxes) across the merger, which can be potentially compared with the gravitational wave signal in the wave-zone, and with observations by gravitational wave detectors. This also suggests a possibility of proving the Penrose inequality mathematically for generic astrophysical binary back hole configurations.
In this paper, we study Joule-Thomson expansion for Hayward-AdS black hole in the extended phase space, and obtain a Joule-Thomson expansion formula for the black hole. We plot the inversion and isenthalpic curves in the T-P plane, and determine the cooling-heating regions. The intersection points of the isenthalpic and inversion curves are exactly the inversion points discriminating the heating process from the cooling one.
Basing on the ideas used by Kiselev, we study the Hayward black hole surrounded by quintessence. By setting for the quintessence state parameter at the special case of $omega=-frac{2}{3}$, using the metric of the black hole surrounded by quintessence and the definition of the effective potential, we analyzed in detail the null geodesics for different energies. We also analyzed the horizons of the Hayward black hole surrounded by quintessence as well as the shadow of the black hole.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا