No Arabic abstract
In the Chinese medical insurance industry, the assessors role is essential and requires significant efforts to converse with the claimant. This is a highly professional job that involves many parts, such as identifying personal information, collecting related evidence, and making a final insurance report. Due to the coronavirus (COVID-19) pandemic, the previous offline insurance assessment has to be conducted online. However, for the junior assessor often lacking practical experience, it is not easy to quickly handle such a complex online procedure, yet this is important as the insurance company needs to decide how much compensation the claimant should receive based on the assessors feedback. In order to promote assessors work efficiency and speed up the overall procedure, in this paper, we propose a dialogue-based information extraction system that integrates advanced NLP technologies for medical insurance assessment. With the assistance of our system, the average time cost of the procedure is reduced from 55 minutes to 35 minutes, and the total human resources cost is saved 30% compared with the previous offline procedure. Until now, the system has already served thousands of online claim cases.
Developing conversational agents to interact with patients and provide primary clinical advice has attracted increasing attention due to its huge application potential, especially in the time of COVID-19 Pandemic. However, the training of end-to-end neural-based medical dialogue system is restricted by an insufficient quantity of medical dialogue corpus. In this work, we make the first attempt to build and release a large-scale high-quality Medical Dialogue dataset related to 12 types of common Gastrointestinal diseases named MedDG, with more than 17K conversations collected from the online health consultation community. Five different categories of entities, including diseases, symptoms, attributes, tests, and medicines, are annotated in each conversation of MedDG as additional labels. To push forward the future research on building expert-sensitive medical dialogue system, we proposes two kinds of medical dialogue tasks based on MedDG dataset. One is the next entity prediction and the other is the doctor response generation. To acquire a clear comprehension on these two medical dialogue tasks, we implement several state-of-the-art benchmarks, as well as design two dialogue models with a further consideration on the predicted entities. Experimental results show that the pre-train language models and other baselines struggle on both tasks with poor performance in our dataset, and the response quality can be enhanced with the help of auxiliary entity information. From human evaluation, the simple retrieval model outperforms several state-of-the-art generative models, indicating that there still remains a large room for improvement on generating medically meaningful responses.
We present the first human-annotated dialogue-based relation extraction (RE) dataset DialogRE, aiming to support the prediction of relation(s) between two arguments that appear in a dialogue. We further offer DialogRE as a platform for studying cross-sentence RE as most facts span multiple sentences. We argue that speaker-related information plays a critical role in the proposed task, based on an analysis of similarities and differences between dialogue-based and traditional RE tasks. Considering the timeliness of communication in a dialogue, we design a new metric to evaluate the performance of RE methods in a conversational setting and investigate the performance of several representative RE methods on DialogRE. Experimental results demonstrate that a speaker-aware extension on the best-performing model leads to gains in both the standard and conversational evaluation settings. DialogRE is available at https://dataset.org/dialogre/.
Most modern Information Extraction (IE) systems are implemented as sequential taggers and only model local dependencies. Non-local and non-sequential context is, however, a valuable source of information to improve predictions. In this paper, we introduce GraphIE, a framework that operates over a graph representing a broad set of dependencies between textual units (i.e. words or sentences). The algorithm propagates information between connected nodes through graph convolutions, generating a richer representation that can be exploited to improve word-level predictions. Evaluation on three different tasks --- namely textual, social media and visual information extraction --- shows that GraphIE consistently outperforms the state-of-the-art sequence tagging model by a significant margin.
Dialogue-based relation extraction (DiaRE) aims to detect the structural information from unstructured utterances in dialogues. Existing relation extraction models may be unsatisfactory under such a conversational setting, due to the entangled logic and information sparsity issues in utterances involving multiple speakers. To this end, we introduce SOLS, a novel model which can explicitly induce speaker-oriented latent structures for better DiaRE. Specifically, we learn latent structures to capture the relationships among tokens beyond the utterance boundaries, alleviating the entangled logic issue. During the learning process, our speaker-specific regularization method progressively highlights speaker-related key clues and erases the irrelevant ones, alleviating the information sparsity issue. Experiments on three public datasets demonstrate the effectiveness of our proposed approach.
The multi-format information extraction task in the 2021 Language and Intelligence Challenge is designed to comprehensively evaluate information extraction from different dimensions. It consists of an multiple slots relation extraction subtask and two event extraction subtasks that extract events from both sentence-level and document-level. Here we describe our system for this multi-format information extraction competition task. Specifically, for the relation extraction subtask, we convert it to a traditional triple extraction task and design a voting based method that makes full use of existing models. For the sentence-level event extraction subtask, we convert it to a NER task and use a pointer labeling based method for extraction. Furthermore, considering the annotated trigger information may be helpful for event extraction, we design an auxiliary trigger recognition model and use the multi-task learning mechanism to integrate the trigger features into the event extraction model. For the document-level event extraction subtask, we design an Encoder-Decoder based method and propose a Transformer-alike decoder. Finally,our system ranks No.4 on the test set leader-board of this multi-format information extraction task, and its F1 scores for the subtasks of relation extraction, event extractions of sentence-level and document-level are 79.887%, 85.179%, and 70.828% respectively. The codes of our model are available at {https://github.com/neukg/MultiIE}.