No Arabic abstract
We present the first human-annotated dialogue-based relation extraction (RE) dataset DialogRE, aiming to support the prediction of relation(s) between two arguments that appear in a dialogue. We further offer DialogRE as a platform for studying cross-sentence RE as most facts span multiple sentences. We argue that speaker-related information plays a critical role in the proposed task, based on an analysis of similarities and differences between dialogue-based and traditional RE tasks. Considering the timeliness of communication in a dialogue, we design a new metric to evaluate the performance of RE methods in a conversational setting and investigate the performance of several representative RE methods on DialogRE. Experimental results demonstrate that a speaker-aware extension on the best-performing model leads to gains in both the standard and conversational evaluation settings. DialogRE is available at https://dataset.org/dialogre/.
Dialogue-based relation extraction (DiaRE) aims to detect the structural information from unstructured utterances in dialogues. Existing relation extraction models may be unsatisfactory under such a conversational setting, due to the entangled logic and information sparsity issues in utterances involving multiple speakers. To this end, we introduce SOLS, a novel model which can explicitly induce speaker-oriented latent structures for better DiaRE. Specifically, we learn latent structures to capture the relationships among tokens beyond the utterance boundaries, alleviating the entangled logic issue. During the learning process, our speaker-specific regularization method progressively highlights speaker-related key clues and erases the irrelevant ones, alleviating the information sparsity issue. Experiments on three public datasets demonstrate the effectiveness of our proposed approach.
Existing research studies on cross-sentence relation extraction in long-form multi-party conversations aim to improve relation extraction without considering the explainability of such methods. This work addresses that gap by focusing on extracting explanations that indicate that a relation exists while using only partially labeled data. We propose our model-agnostic framework, D-REX, a policy-guided semi-supervised algorithm that explains and ranks relations. We frame relation extraction as a re-ranking task and include relation- and entity-specific explanations as an intermediate step of the inference process. We find that about 90% of the time, human annotators prefer D-REXs explanations over a strong BERT-based joint relation extraction and explanation model. Finally, our evaluations on a dialogue relation extraction dataset show that our method is simple yet effective and achieves a state-of-the-art F1 score on relation extraction, improving upon existing methods by 13.5%.
The newly emerged transformer technology has a tremendous impact on NLP research. In the general English domain, transformer-based models have achieved state-of-the-art performances on various NLP benchmarks. In the clinical domain, researchers also have investigated transformer models for clinical applications. The goal of this study is to systematically explore three widely used transformer-based models (i.e., BERT, RoBERTa, and XLNet) for clinical relation extraction and develop an open-source package with clinical pre-trained transformer-based models to facilitate information extraction in the clinical domain. We developed a series of clinical RE models based on three transformer architectures, namely BERT, RoBERTa, and XLNet. We evaluated these models using 2 publicly available datasets from 2018 MADE1.0 and 2018 n2c2 challenges. We compared two classification strategies (binary vs. multi-class classification) and investigated two approaches to generate candidate relations in different experimental settings. In this study, we compared three transformer-based (BERT, RoBERTa, and XLNet) models for relation extraction. We demonstrated that the RoBERTa-clinical RE model achieved the best performance on the 2018 MADE1.0 dataset with an F1-score of 0.8958. On the 2018 n2c2 dataset, the XLNet-clinical model achieved the best F1-score of 0.9610. Our results indicated that the binary classification strategy consistently outperformed the multi-class classification strategy for clinical relation extraction. Our methods and models are publicly available at https://github.com/uf-hobi-informatics-lab/ClinicalTransformerRelationExtraction. We believe this work will improve current practice on clinical relation extraction and other related NLP tasks in the biomedical domain.
In the Chinese medical insurance industry, the assessors role is essential and requires significant efforts to converse with the claimant. This is a highly professional job that involves many parts, such as identifying personal information, collecting related evidence, and making a final insurance report. Due to the coronavirus (COVID-19) pandemic, the previous offline insurance assessment has to be conducted online. However, for the junior assessor often lacking practical experience, it is not easy to quickly handle such a complex online procedure, yet this is important as the insurance company needs to decide how much compensation the claimant should receive based on the assessors feedback. In order to promote assessors work efficiency and speed up the overall procedure, in this paper, we propose a dialogue-based information extraction system that integrates advanced NLP technologies for medical insurance assessment. With the assistance of our system, the average time cost of the procedure is reduced from 55 minutes to 35 minutes, and the total human resources cost is saved 30% compared with the previous offline procedure. Until now, the system has already served thousands of online claim cases.
Knowledge is a formal way of understanding the world, providing a human-level cognition and intelligence for the next-generation artificial intelligence (AI). One of the representations of knowledge is semantic relations between entities. An effective way to automatically acquire this important knowledge, called Relation Extraction (RE), a sub-task of information extraction, plays a vital role in Natural Language Processing (NLP). Its purpose is to identify semantic relations between entities from natural language text. To date, there are several studies for RE in previous works, which have documented these techniques based on Deep Neural Networks (DNNs) become a prevailing technique in this research. Especially, the supervised and distant supervision methods based on DNNs are the most popular and reliable solutions for RE. This article 1) introduces some general concepts, and further 2) gives a comprehensive overview of DNNs in RE from two points of view: supervised RE, which attempts to improve the standard RE systems, and distant supervision RE, which adopts DNNs to design sentence encoder and de-noise method. We further 3) cover some novel methods and recent trends as well as discuss possible future research directions for this task.