No Arabic abstract
Assessments of impacts of climate change and future projections over the Indian region, have so far relied on a single regional climate model (RCM) - eg., the PRECIS RCM of the Hadley Centre, UK. While these assessments have provided inputs to various reports (e.g., INCCA 2010; NATCOMM2 2012), it is important to have an ensemble of climate projections drawn from multiple RCMs due to large uncertainties in regional-scale climate projections. Ensembles of multi-RCM projections driven under different perceivable socio-economic scenarios are required to capture the probable path of growth, and provide the behavior of future climate and impacts on various biophysical systems and economic sectors dependent on such systems. The Centre for Climate Change Research, Indian Institute of Tropical Meteorology (CCCR-IITM) has generated an ensemble of high resolution downscaled projections of regional climate and monsoon over South Asia until 2100 for the Intergovernmental Panel for Climate Change (IPCC)using a RCM (ICTP-RegCM4) at 50 km horizontal resolution, by driving the regional model with lateral and lower boundary conditions from multiple global atmosphere-ocean coupled models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The future projections are based on three Representation Concentration Pathway (RCP) scenarios (viz., RCP2.6, RCP4.5, RCP8.5) of the IPCC.
When the climate system is forced, e.g. by emission of greenhouse gases, it responds on multiple time scales. As temperatures rise, feedback processes might intensify or weaken. Current methods to analyze feedback strength, however, do not take such state dependency into account; they only consider changes in (global mean) temperature and assume all feedbacks are linearly related to that. This makes (transient) changes in feedback strengths almost intangible and generally leads to underestimation of future warming. Here, we present a multivariate (and spatially explicit) framework that facilitates dissection of climate feedbacks over time scales. Using this framework, information on the composition of projected (transient) future climates and feedback strengths can be obtained. Moreover, it can be used to make projections for many emission scenarios through linear response theory. The new framework is illustrated using the Community Earth System Model version 2 (CESM2).
Quantifying the impact of climate change on future air quality is a challenging subject in air quality studies. An ANN model is employed to simulate hourly O3 concentrations. The model is developed based on hourly monitored values of temperature, solar radiation, nitrogen monoxide, and nitrogen dioxide which are monitored during summers (June, July, and August) of 2009-2012 at urban air quality stations in Tehran, Iran. Climate projections by HadCM3 GCM over the study area, driven by IPCC SRES A1B, A2, and B1 emission scenarios, are downscaled by LARS-WG5 model over the periods of 2015-2039 and 2040-2064. The projections are calculated by assuming that current emissions conditions of O3 precursors remain constant in the future. The employed O3 metrics include the number of days exceeding one-hour (1-hr) (120 ppb) and eight-hour (8-hr) (75 ppb) O3 standards and the number of days exceeding 8-hr Air Quality Index (AQI). The projected increases in solar radiation and decreases in precipitation in future summers along with summertime daily maximum temperature rise of about 1.2 and 3 celsius in the first and second climate periods respectively are some indications of more favorable conditions for O3 formation over the study area in the future. Based on pollution conditions of the violation-free summer of 2012, the summertime exceedance days of 8-hr O3 standard are projected to increase in the future by about 4.2 days in the short term and about 12.3 days in the mid-term. Similarly, based on pollution conditions of the polluted summer of 2010 with 58 O3 exceedance days, this metric is projected to increase about 4.5 days in the short term and about 14.1 days in the mid-term. Moreover, the number of Unhealthy and Very Unhealthy days in 8-hr AQI is also projected to increase based on pollution conditions of both summers.
Flood-related risks to people and property are expected to increase in the future due to environmental and demographic changes. It is important to quantify and effectively communicate flood hazards and exposure to inform the design and implementation of flood risk management strategies. Here we develop an integrated modeling framework to assess projected changes in regional riverine flood inundation risks. The framework samples climate model outputs to force a hydrologic model and generate streamflow projections. Together with a statistical and hydraulic model, we use the projected streamflow to map the uncertainty of flood inundation projections for extreme flood events. We implement the framework for rivers across the state of Pennsylvania, United States. Our projections suggest that flood hazards and exposure across Pennsylvania are overall increasing with future climate change. Specific regions, including the main stem Susquehanna River, lower portion of the Allegheny basin and central portion of Delaware River basin, demonstrate higher flood inundation risks. In our analysis, the climate uncertainty dominates the overall uncertainty surrounding the flood inundation projection chain. The combined hydrologic and hydraulic uncertainties can account for as much as 37% of the total uncertainty. We discuss how this framework can provide regional and dynamic flood-risk assessments and help to inform the design of risk-management strategies.
Skilful prediction of the seasonal Indian summer monsoon (ISM) rainfall (ISMR) at least one season in advance has great socio-economic value. It represents a lifeline for about a sixth of the worlds population. The ISMR prediction remained a challenging problem with the sub-critical skills of the dynamical models attributable to limited understanding of the interaction among clouds, convection, and circulation. The variability of cloud hydrometeors (cloud ice and cloud water) in different time scales (3-7 days, 10-20 days and 30-60 days bands) are examined from re-analysis data during Indian summer monsoon (ISM). Here, we also show that the internal variability of cloud hydrometeors (particularly cloud ice) associated with the ISM sub-seasonal (synoptic + intra-seasonal) fluctuations is partly predictable as they are found to be tied with slowly varying forcing (e.g., El Ni~no and Southern Oscillation). The representation of deep convective clouds, which involve ice phase processes in a coupled climate model, strongly modulates ISMR variability in association with global predictors. The results from the two sensitivity simulations using coupled global climate model (CGCM) are provided to demonstrate the importance of the cloud hydrometeors on ISM rainfall predictability. Therefore, this study provides a scientific basis for improving the simulation of the seasonal ISMR by improving the physical processes of the cloud on a sub-seasonal time scale and motivating further research in this direction.
The Centre for Climate Change Research (CCCR;http://cccr.tropmet.res.in) at the Indian Institute of Tropical Meteorology (IITM; http://www.tropmet.res.in), Pune, launched in 2009 with the support of the Ministry of Earth Sciences (MoES), Government of India, focuses on the development of new climate modelling capabilities in India and South Asia to address issues concerning the science of climate change. CCCR-IITM has the mandate of developing an Earth System Model and to make the regional climate projections. An important achievement was made by developing an Earth System Model at IITM, which is an important step towards understanding global and regional climate response to long-term climate variability and climate change. CCCR-IITM has also generated an ensemble of high resolution dynamically downscaled future projections of regional climate over South Asia and Indian monsoon, which are found useful for impact assessment studies and for quantifying uncertainties in the regional projections. A brief overview of these core climate change modeling activities of CCCR-IITM was presented in an Interim Report on Climate Change over India (available at http://cccr.tropmet.res.in/home/reports.jsp)