In this paper we have studied the class of Finsler metrics, called C3-like metrics which satisfy the un-normal and normal Ricci flow equation and proved that such metrics are Einstein.
In this work, we consider a class of Finsler metrics using the warped product notion introduced by Chen, S. and Zhao (2018), with another warping, one that is consistent with static spacetimes. We will give the PDE characterization for the proposed metrics to be Ricci-flat and explicitly construct two non-Riemannian examples.
We show that the space of metrics of positive scalar curvature on any 3-manifold is either empty or contractible. Second, we show that the diffeomorphism group of every 3-dimensional spherical space form deformation retracts to its isometry group. This proves the Generalized Smale Conjecture. Our argument is independent of Hatchers theorem in the $S^3$ case and in particular it gives a new proof of the $S^3$ case.
In this paper, we consider a special class of singular Finsler metrics: $m$-Kropina metrics which are defined by a Riemannian metric and a $1$-form. We show that an $m$-Kropina metric ($m e -1$) of scalar flag curvature must be locally Minkowskian in dimension $nge 3$. We characterize by some PDEs a Kropina metric ($m=-1$) which is respectively of scalar flag curvature and locally projectively flat in dimension $nge 3$, and obtain some principles and approaches of constructing non-trivial examples of Kropina metrics of scalar flag curvature.
We prove a uniform diameter bound for long time solutions of the normalized Kahler-Ricci flow on an $n$-dimensional projective manifold $X$ with semi-ample canonical bundle under the assumption that the Ricci curvature is uniformly bounded for all time in a fixed domain containing a fibre of $X$ over its canonical model $X_{can}$. This assumption on the Ricci curvature always holds when the Kodaira dimension of $X$ is $n$, $n-1$ or when the general fibre of $X$ over its canonical model is a complex torus. In particular, the normalized Kahler-Ricci flow converges in Gromov-Hausdorff topolopy to its canonical model when $X$ has Kodaira dimension $1$ with $K_X$ being semi-ample and the general fibre of $X$ over its canonical model being a complex torus. We also prove the Gromov-Hausdorff limit of collapsing Ricci-flat Kahler metrics on a holomorphically fibred Calabi-Yau manifold is unique and is homeomorphic to the metric completion of the corresponding twisted Kahler-Einstein metric on the regular part of its base.
We generalize the notion of Zermelo navigation to arbitrary pseudo-Finsler metrics possibly defined in conic subsets. The translation of a pseudo-Finsler metric $F$ is a new pseudo-Finsler metric whose indicatrix is the translation of the indicatrix of $F$ by a vector field $W$ at each point, where $W$ is an arbitrary vector field. Then we show that the Matsumoto tensor of a pseudo-Finsler metric is equal to zero if and only if it is the translation of a semi-Riemannian metric, and when $W$ is homothetic, the flag curvature of the translation coincides with the one of the original one up to the addition of a non-positive constant. In this case, we also give a description of the geodesic flow of the translation.