No Arabic abstract
This paper investigates a novel task of talking face video generation solely from speeches. The speech-to-video generation technique can spark interesting applications in entertainment, customer service, and human-computer-interaction industries. Indeed, the timbre, accent and speed in speeches could contain rich information relevant to speakers appearance. The challenge mainly lies in disentangling the distinct visual attributes from audio signals. In this article, we propose a light-weight, cross-modal distillation method to extract disentangled emotional and identity information from unlabelled video inputs. The extracted features are then integrated by a generative adversarial network into talking face video clips. With carefully crafted discriminators, the proposed framework achieves realistic generation results. Experiments with observed individuals demonstrated that the proposed framework captures the emotional expressions solely from speeches, and produces spontaneous facial motion in the video output. Compared to the baseline method where speeches are combined with a static image of the speaker, the results of the proposed framework is almost indistinguishable. User studies also show that the proposed method outperforms the existing algorithms in terms of emotion expression in the generated videos.
Cued Speech (CS) is a visual communication system for the deaf or hearing impaired people. It combines lip movements with hand cues to obtain a complete phonetic repertoire. Current deep learning based methods on automatic CS recognition suffer from a common problem, which is the data scarcity. Until now, there are only two public single speaker datasets for French (238 sentences) and British English (97 sentences). In this work, we propose a cross-modal knowledge distillation method with teacher-student structure, which transfers audio speech information to CS to overcome the limited data problem. Firstly, we pretrain a teacher model for CS recognition with a large amount of open source audio speech data, and simultaneously pretrain the feature extractors for lips and hands using CS data. Then, we distill the knowledge from teacher model to the student model with frame-level and sequence-level distillation strategies. Importantly, for frame-level, we exploit multi-task learning to weigh losses automatically, to obtain the balance coefficient. Besides, we establish a five-speaker British English CS dataset for the first time. The proposed method is evaluated on French and British English CS datasets, showing superior CS recognition performance to the state-of-the-art (SOTA) by a large margin.
Binaural audio gives the listener the feeling of being in the recording place and enhances the immersive experience if coupled with AR/VR. But the problem with binaural audio recording is that it requires a specialized setup which is not possible to fabricate within handheld devices as compared to traditional mono audio that can be recorded with a single microphone. In order to overcome this drawback, prior works have tried to uplift the mono recorded audio to binaural audio as a post processing step conditioning on the visual input. But all the prior approaches missed other most important information required for the task, i.e. distance of different sound producing objects from the recording setup. In this work, we argue that the depth map of the scene can act as a proxy for encoding distance information of objects in the scene and show that adding depth features along with image features improves the performance both qualitatively and quantitatively. We propose a novel encoder-decoder architecture, where we use a hierarchical attention mechanism to encode the image and depth feature extracted from individual transformer backbone, with audio features at each layer of the decoder.
The majority of existing speech emotion recognition models are trained and evaluated on a single corpus and a single language setting. These systems do not perform as well when applied in a cross-corpus and cross-language scenario. This paper presents results for speech emotion recognition for 4 languages in both single corpus and cross corpus setting. Additionally, since multi-task learning (MTL) with gender, naturalness and arousal as auxiliary tasks has shown to enhance the generalisation capabilities of the emotion models, this paper introduces language ID as another auxiliary task in MTL framework to explore the role of spoken language on emotion recognition which has not been studied yet.
Automatic segmentation of the prostate cancer from the multi-modal magnetic resonance images is of critical importance for the initial staging and prognosis of patients. However, how to use the multi-modal image features more efficiently is still a challenging problem in the field of medical image segmentation. In this paper, we develop a cross-modal self-attention distillation network by fully exploiting the encoded information of the intermediate layers from different modalities, and the extracted attention maps of different modalities enable the model to transfer the significant spatial information with more details. Moreover, a novel spatial correlated feature fusion module is further employed for learning more complementary correlation and non-linear information of different modality images. We evaluate our model in five-fold cross-validation on 358 MRI with biopsy confirmed. Extensive experiment results demonstrate that our proposed network achieves state-of-the-art performance.
We present a joint audio-visual model for isolating a single speech signal from a mixture of sounds such as other speakers and background noise. Solving this task using only audio as input is extremely challenging and does not provide an association of the separated speech signals with speakers in the video. In this paper, we present a deep network-based model that incorporates both visual and auditory signals to solve this task. The visual features are used to focus the audio on desired speakers in a scene and to improve the speech separation quality. To train our joint audio-visual model, we introduce AVSpeech, a new dataset comprised of thousands of hours of video segments from the Web. We demonstrate the applicability of our method to classic speech separation tasks, as well as real-world scenarios involving heated interviews, noisy bars, and screaming children, only requiring the user to specify the face of the person in the video whose speech they want to isolate. Our method shows clear advantage over state-of-the-art audio-only speech separation in cases of mixed speech. In addition, our model, which is speaker-independent (trained once, applicable to any speaker), produces better results than recent audio-visual speech separation methods that are speaker-dependent (require training a separate model for each speaker of interest).