Do you want to publish a course? Click here

Lifelong Teacher-Student Network Learning

83   0   0.0 ( 0 )
 Added by Fei Ye
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

A unique cognitive capability of humans consists in their ability to acquire new knowledge and skills from a sequence of experiences. Meanwhile, artificial intelligence systems are good at learning only the last given task without being able to remember the databases learnt in the past. We propose a novel lifelong learning methodology by employing a Teacher-Student network framework. While the Student module is trained with a new given database, the Teacher module would remind the Student about the information learnt in the past. The Teacher, implemented by a Generative Adversarial Network (GAN), is trained to preserve and replay past knowledge corresponding to the probabilistic representations of previously learn databases. Meanwhile, the Student module is implemented by a Variational Autoencoder (VAE) which infers its latent variable representation from both the output of the Teacher module as well as from the newly available database. Moreover, the Student module is trained to capture both continuous and discrete underlying data representations across different domains. The proposed lifelong learning framework is applied in supervised, semi-supervised and unsupervised training. The code is available~: url{https://github.com/dtuzi123/Lifelong-Teacher-Student-Network-Learning}



rate research

Read More

Knowledge distillation is a widely used technique for model compression. We posit that the teacher model used in a distillation setup, captures relationships between classes, that extend beyond the original dataset. We empirically show that a teacher model can transfer this knowledge to a student model even on an {it out-of-distribution} dataset. Using this approach, we show promising results on MNIST, CIFAR-10, and Caltech-256 datasets using unlabeled image data from different sources. Our results are encouraging and help shed further light from the perspective of understanding knowledge distillation and utilizing unlabeled data to improve model quality.
Adversarial examples have appeared as a ubiquitous property of machine learning models where bounded adversarial perturbation could mislead the models to make arbitrarily incorrect predictions. Such examples provide a way to assess the robustness of machine learning models as well as a proxy for understanding the model training process. Extensive studies try to explain the existence of adversarial examples and provide ways to improve model robustness (e.g. adversarial training). While they mostly focus on models trained on datasets with predefined labels, we leverage the teacher-student framework and assume a teacher model, or oracle, to provide the labels for given instances. We extend Tian (2019) in the case of low-rank input data and show that student specialization (trained student neuron is highly correlated with certain teacher neuron at the same layer) still happens within the input subspace, but the teacher and student nodes could differ wildly out of the data subspace, which we conjecture leads to adversarial examples. Extensive experiments show that student specialization correlates strongly with model robustness in different scenarios, including student trained via standard training, adversarial training, confidence-calibrated adversarial training, and training with robust feature dataset. Our studies could shed light on the future exploration about adversarial examples, and enhancing model robustness via principled data augmentation.
90 - Tianyu Guo , Chang Xu , Shiyi He 2018
Deep neural networks bring in impressive accuracy in various applications, but the success often relies on the heavy network architecture. Taking well-trained heavy networks as teachers, classical teacher-student learning paradigm aims to learn a student network that is lightweight yet accurate. In this way, a portable student network with significantly fewer parameters can achieve a considerable accuracy which is comparable to that of teacher network. However, beyond accuracy, robustness of the learned student network against perturbation is also essential for practical uses. Existing teacher-student learning frameworks mainly focus on accuracy and compression ratios, but ignore the robustness. In this paper, we make the student network produce more confident predictions with the help of the teacher network, and analyze the lower bound of the perturbation that will destroy the confidence of the student network. Two important objectives regarding prediction scores and gradients of examples are developed to maximize this lower bound, so as to enhance the robustness of the student network without sacrificing the performance. Experiments on benchmark datasets demonstrate the efficiency of the proposed approach to learn robust student networks which have satisfying accuracy and compact sizes.
78 - Fei Ye , Adrian G. Bors 2021
In this paper, we propose an end-to-end lifelong learning mixture of experts. Each expert is implemented by a Variational Autoencoder (VAE). The experts in the mixture system are jointly trained by maximizing a mixture of individual component evidence lower bounds (MELBO) on the log-likelihood of the given training samples. The mixing coefficients in the mixture, control the contributions of each expert in the goal representation. These are sampled from a Dirichlet distribution whose parameters are determined through non-parametric estimation during lifelong learning. The model can learn new tasks fast when these are similar to those previously learnt. The proposed Lifelong mixture of VAE (L-MVAE) expands its architecture with new components when learning a completely new task. After the training, our model can automatically determine the relevant expert to be used when fed with new data samples. This mechanism benefits both the memory efficiency and the required computational cost as only one expert is used during the inference. The L-MVAE inference model is able to perform interpolation in the joint latent space across the data domains associated with different tasks and is shown to be efficient for disentangled learning representation.
In humans and animals, curriculum learning -- presenting data in a curated order - is critical to rapid learning and effective pedagogy. Yet in machine learning, curricula are not widely used and empirically often yield only moderate benefits. This stark difference in the importance of curriculum raises a fundamental theoretical question: when and why does curriculum learning help? In this work, we analyse a prototypical neural network model of curriculum learning in the high-dimensional limit, employing statistical physics methods. Curricula could in principle change both the learning speed and asymptotic performance of a model. To study the former, we provide an exact description of the online learning setting, confirming the long-standing experimental observation that curricula can modestly speed up learning. To study the latter, we derive performance in a batch learning setting, in which a network trains to convergence in successive phases of learning on dataset slices of varying difficulty. With standard training losses, curriculum does not provide generalisation benefit, in line with empirical observations. However, we show that by connecting different learning phases through simple Gaussian priors, curriculum can yield a large improvement in test performance. Taken together, our reduced analytical descriptions help reconcile apparently conflicting empirical results and trace regimes where curriculum learning yields the largest gains. More broadly, our results suggest that fully exploiting a curriculum may require explicit changes to the loss function at curriculum boundaries.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا