Do you want to publish a course? Click here

Robust Student Network Learning

91   0   0.0 ( 0 )
 Added by Tianyu Guo
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Deep neural networks bring in impressive accuracy in various applications, but the success often relies on the heavy network architecture. Taking well-trained heavy networks as teachers, classical teacher-student learning paradigm aims to learn a student network that is lightweight yet accurate. In this way, a portable student network with significantly fewer parameters can achieve a considerable accuracy which is comparable to that of teacher network. However, beyond accuracy, robustness of the learned student network against perturbation is also essential for practical uses. Existing teacher-student learning frameworks mainly focus on accuracy and compression ratios, but ignore the robustness. In this paper, we make the student network produce more confident predictions with the help of the teacher network, and analyze the lower bound of the perturbation that will destroy the confidence of the student network. Two important objectives regarding prediction scores and gradients of examples are developed to maximize this lower bound, so as to enhance the robustness of the student network without sacrificing the performance. Experiments on benchmark datasets demonstrate the efficiency of the proposed approach to learn robust student networks which have satisfying accuracy and compact sizes.



rate research

Read More

82 - Fei Ye , Adrian G. Bors 2021
A unique cognitive capability of humans consists in their ability to acquire new knowledge and skills from a sequence of experiences. Meanwhile, artificial intelligence systems are good at learning only the last given task without being able to remember the databases learnt in the past. We propose a novel lifelong learning methodology by employing a Teacher-Student network framework. While the Student module is trained with a new given database, the Teacher module would remind the Student about the information learnt in the past. The Teacher, implemented by a Generative Adversarial Network (GAN), is trained to preserve and replay past knowledge corresponding to the probabilistic representations of previously learn databases. Meanwhile, the Student module is implemented by a Variational Autoencoder (VAE) which infers its latent variable representation from both the output of the Teacher module as well as from the newly available database. Moreover, the Student module is trained to capture both continuous and discrete underlying data representations across different domains. The proposed lifelong learning framework is applied in supervised, semi-supervised and unsupervised training. The code is available~: url{https://github.com/dtuzi123/Lifelong-Teacher-Student-Network-Learning}
Recently, consistency-based methods have achieved state-of-the-art results in semi-supervised learning (SSL). These methods always involve two roles, an explicit or implicit teacher model and a student model, and penalize predictions under different perturbations by a consistency constraint. However, the weights of these two roles are tightly coupled since the teacher is essentially an exponential moving average (EMA) of the student. In this work, we show that the coupled EMA teacher causes a performance bottleneck. To address this problem, we introduce Dual Student, which replaces the teacher with another student. We also define a novel concept, stable sample, following which a stabilization constraint is designed for our structure to be trainable. Further, we discuss two variants of our method, which produce even higher performance. Extensive experiments show that our method improves the classification performance significantly on several main SSL benchmarks. Specifically, it reduces the error rate of the 13-layer CNN from 16.84% to 12.39% on CIFAR-10 with 1k labels and from 34.10% to 31.56% on CIFAR-100 with 10k labels. In addition, our method also achieves a clear improvement in domain adaptation.
As machine learning (ML) systems become pervasive, safeguarding their security is critical. Recent work has demonstrated that motivated adversaries could add adversarial perturbations to the test data to mislead ML systems. So far, most research has focused on providing provable robustness guarantees for ML models against a specific Lp norm bounded adversarial perturbation. However, in practice previous work has shown that there are other types of realistic adversarial transformations whose semantic meaning has been leveraged to attack ML systems. In this paper, we aim to provide a unified framework for certifying ML robustness against general adversarial transformations. First, we identify the semantic transformations as different categories: resolvable (e.g., Gaussian blur and brightness) and differentially resolvable transformations (e.g., rotation and scaling). We then provide sufficient conditions and strategies for certifying certain transformations. For instance, we propose a novel sampling-based interpolation approach with estimated Lipschitz upper bound to certify the robustness against differentially resolvable transformations. In addition, we theoretically optimize the smoothing strategies for certifying the robustness of ML models against different transformations. For instance, we show that smoothing by sampling from exponential distribution provides a tighter robustness bound than Gaussian. Extensive experiments on 7 semantic transformations show that our proposed unified framework significantly outperforms the state-of-the-art certified robustness approaches on several datasets including ImageNet.
Convolutional Neural Networks (CNNs) are known to rely more on local texture rather than global shape when making decisions. Recent work also indicates a close relationship between CNNs texture-bias and its robustness against distribution shift, adversarial perturbation, random corruption, etc. In this work, we attempt at improving various kinds of robustness universally by alleviating CNNs texture bias. With inspiration from the human visual system, we propose a light-weight model-agnostic method, namely Informative Dropout (InfoDrop), to improve interpretability and reduce texture bias. Specifically, we discriminate texture from shape based on local self-information in an image, and adopt a Dropout-like algorithm to decorrelate the model output from the local texture. Through extensive experiments, we observe enhanced robustness under various scenarios (domain generalization, few-shot classification, image corruption, and adversarial perturbation). To the best of our knowledge, this work is one of the earliest attempts to improve different kinds of robustness in a unified model, shedding new light on the relationship between shape-bias and robustness, also on new approaches to trustworthy machine learning algorithms. Code is available at https://github.com/bfshi/InfoDrop.
In humans and animals, curriculum learning -- presenting data in a curated order - is critical to rapid learning and effective pedagogy. Yet in machine learning, curricula are not widely used and empirically often yield only moderate benefits. This stark difference in the importance of curriculum raises a fundamental theoretical question: when and why does curriculum learning help? In this work, we analyse a prototypical neural network model of curriculum learning in the high-dimensional limit, employing statistical physics methods. Curricula could in principle change both the learning speed and asymptotic performance of a model. To study the former, we provide an exact description of the online learning setting, confirming the long-standing experimental observation that curricula can modestly speed up learning. To study the latter, we derive performance in a batch learning setting, in which a network trains to convergence in successive phases of learning on dataset slices of varying difficulty. With standard training losses, curriculum does not provide generalisation benefit, in line with empirical observations. However, we show that by connecting different learning phases through simple Gaussian priors, curriculum can yield a large improvement in test performance. Taken together, our reduced analytical descriptions help reconcile apparently conflicting empirical results and trace regimes where curriculum learning yields the largest gains. More broadly, our results suggest that fully exploiting a curriculum may require explicit changes to the loss function at curriculum boundaries.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا