No Arabic abstract
The electrosorption of Gd$^{3+}$ ions from aqueous 70$,$mM Gd(NO$_3$)$_3$ solution in monolithic carbon aerogel electrodes was recorded by dynamic neutron imaging. The aerogels have a bimodal pore size distribution consisting of macropores centred at 115$,$nm and mesopores centred at 15$,$nm. After the uptake of Gd$^{3+}$ ions by the negatively charged surface of the porous structure, an inhomogeneous magnetic field was applied to the system of discharging electrodes. This led to a convective flow and confinement of Gd(NO$_3$)$_3$ solution in the magnetic field gradient. Thus, a way to desalt and capture paramagnetic ions from an initially homogeneous solution is established.
Over the past decade, capacitive deionization (CDI) has realized a surge in attention in the field of water desalination and can now be considered as an important technology class, along with reverse osmosis and electrodialysis. While many of the recently developed technologies no longer use a mechanism that follows the strict definition of the term capacitive, these methods nevertheless share many common elements that encourage treating them with similar metrics and analyses. Specifically, they all involve electrically driven removal of ions from a feed stream, storage in an electrode (i.e., ion electrosorption) and release, in charge/discharge cycles. Grouping all these methods in the technology class of CDI makes it possible to treat evolving new technologies in standardized terms and compare them to other technologies in the same class.
The low efficiency of commercially-used reverse osmosis (RO) membranes has been the main obstacle in seawater desalination application. Here, we report the auspicious performance, through molecular dynamics simulations, of a seawater desalination filter based on the recently-synthesized graphene-like carbon nitride (g-C2N) [Nat. Commun., 2015, 6, 6486]. Taking advantage of the inherent nanopores and excellent mechanical properties of g-C2N filter, highly efficient seawater desalination can be achieved by modulating the nanopores under tensile strain. The water permeability can be improved by two orders of magnitude compared to RO membranes, which offers a promising approach to the global water shortage solution.
Using trapped ions in an entangled state we propose detecting a magnetic dipole of a single atom at distance of a few $mu$m. This requires a measurement of the magnetic field gradient at a level of about 10$^{-13}$ Tesla/$mu$m. We discuss applications e.g. in determining a wide variation of ionic magnetic moments, for investigating the magnetic substructure of ions with a level structure not accessible for optical cooling and detection,and for studying exotic or rare ions, and molecular ions. The scheme may also be used for measureing spin imbalances of neutral atoms or atomic ensembles trapped by optical dipole forces. As the proposed method relies on techniques well established in ion trap quantum information processing it is within reach of current technology.
The method of neutron imaging was adopted to map the concentration evolution of aqueous paramagnetic Gd(NO3)3 solutions. Magnetic manipulation of the paramagnetic liquid within a miscible nonmagnetic liquid is possible by countering density-difference driven convection. The formation of salt fingers caused by double-diffusive convection in a liquid-liquid system of Gd(NO3)3 and Y(NO3)3 solutions can be prevented by the magnetic field gradient force.
We report on the experimental investigation of an individual pseudomolecule using trapped ions with adjustable magnetically induced J-type coupling between spin states. Resonances of individual spins are well separated and are addressed with high fidelity. Quantum gates are carried out using microwave radiation in the presence of thermal excitation of the pseudomolecules vibrations. Demonstrating Controlled-NOT gates between non-nearest neighbors serves as a proof-of-principle of a quantum bus employing a spin chain. Combining advantageous features of nuclear magnetic resonance experiments and trapped ions, respectively, opens up a new avenue towards scalable quantum information processing.