Do you want to publish a course? Click here

Designer Spin Pseudomolecule Implemented with Trapped Ions in a Magnetic Gradient

114   0   0.0 ( 0 )
 Added by Christof Wunderlich
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the experimental investigation of an individual pseudomolecule using trapped ions with adjustable magnetically induced J-type coupling between spin states. Resonances of individual spins are well separated and are addressed with high fidelity. Quantum gates are carried out using microwave radiation in the presence of thermal excitation of the pseudomolecules vibrations. Demonstrating Controlled-NOT gates between non-nearest neighbors serves as a proof-of-principle of a quantum bus employing a spin chain. Combining advantageous features of nuclear magnetic resonance experiments and trapped ions, respectively, opens up a new avenue towards scalable quantum information processing.



rate research

Read More

Using trapped ions in an entangled state we propose detecting a magnetic dipole of a single atom at distance of a few $mu$m. This requires a measurement of the magnetic field gradient at a level of about 10$^{-13}$ Tesla/$mu$m. We discuss applications e.g. in determining a wide variation of ionic magnetic moments, for investigating the magnetic substructure of ions with a level structure not accessible for optical cooling and detection,and for studying exotic or rare ions, and molecular ions. The scheme may also be used for measureing spin imbalances of neutral atoms or atomic ensembles trapped by optical dipole forces. As the proposed method relies on techniques well established in ion trap quantum information processing it is within reach of current technology.
We propose a new method for generating programmable interactions in one- and two-dimensional trapped-ion quantum simulators. Here we consider the use of optical tweezers to engineer the sound-wave spectrum of trapped ion crystals. We show that this approach allows us to tune the interactions and connectivity of the ion qubits beyond the power-law interactions accessible in current setups. We demonstrate the experimental feasibility of our proposal using realistic tweezer settings and experimentally relevant trap parameters to generate the optimal tweezer patterns to create target spin-spin interaction patterns in both one- and two-dimensional crystals. Our approach will advance quantum simulation in trapped-ion platforms as it allows them to realize a broader family of quantum spin Hamiltonians.
We present a new method of spin-motion coupling for trapped ions using microwaves and a magnetic field gradient oscillating close to the ions motional frequency. We demonstrate and characterize this coupling experimentally using a single ion in a surface-electrode trap that incorporates current-carrying electrodes to generate the microwave field and the oscillating magnetic field gradient. Using this method, we perform resolved-sideband cooling of a single motional mode to its ground state.
Laser-cooled and trapped atomic ions form an ideal standard for the simulation of interacting quantum spin models. Effective spins are represented by appropriate internal energy levels within each ion, and the spins can be measured with near-perfect efficiency using state-dependent fluorescence techniques. By applying optical fields that exert optical dipole forces on the ions, their Coulomb interaction can be modulated to produce long-range and tunable spin-spin interactions that can be reconfigured by shaping the spectrum and pattern of the laser fields, in a prototypical example of a quantum simulator. Here we review the theoretical mapping of atomic ions to interacting spin systems, the preparation of complex equilibrium states, the study of dynamical processes in these many-body interacting quantum systems, and the use of this platform for optimization and other tasks. The use of such quantum simulators for studying spin models may inform our understanding of exotic quantum materials and shed light on the behavior of interacting quantum systems that cannot be modeled with conventional computers.
Quantum computers hold the promise to solve certain problems exponentially faster than their classical counterparts. Trapped atomic ions are among the physical systems in which building such a computing device seems viable. In this work we present a small-scale quantum information processor based on a string of $^{40}$Ca${^+}$ ions confined in a macroscopic linear Paul trap. We review our set of operations which includes non-coherent operations allowing us to realize arbitrary Markovian processes. In order to build a larger quantum information processor it is mandatory to reduce the error rate of the available operations which is only possible if the physics of the noise processes is well understood. We identify the dominant noise sources in our system and discuss their effects on different algorithms. Finally we demonstrate how our entire set of operations can be used to facilitate the implementation of algorithms by examples of the quantum Fourier transform and the quantum order finding algorithm.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا