Do you want to publish a course? Click here

Neutron imaging of liquid-liquid systems containing paramagnetic salt solutions

58   0   0.0 ( 0 )
 Added by Tim A. Butcher
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The method of neutron imaging was adopted to map the concentration evolution of aqueous paramagnetic Gd(NO3)3 solutions. Magnetic manipulation of the paramagnetic liquid within a miscible nonmagnetic liquid is possible by countering density-difference driven convection. The formation of salt fingers caused by double-diffusive convection in a liquid-liquid system of Gd(NO3)3 and Y(NO3)3 solutions can be prevented by the magnetic field gradient force.



rate research

Read More

We propose a novel approach to the numerical simulation of thin film flows, based on the lattice Boltzmann method. We outline the basic features of the method, show in which limits the expected thin film equations are recovered and perform validation tests. The numerical scheme is applied to the viscous Rayleigh-Taylor instability of a thin film and to the spreading of a sessile drop towards its equilibrium contact angle configuration. We show that the Cox-Voinov law is satisfied, and that the effect of a tunable slip length on the substrate is correctly captured. We address, then, the problem of a droplet sliding on an inclined plane, finding that the Capillary number scales linearly with the Bond number, in agreement with experimental results. At last, we demonstrate the ability of the method to handle heterogenous and complex systems by showcasing the controlled dewetting of a thin film on a chemically structured substrate.
Formation, evolution, and vanishing of bubbles are common phenomena in our nature, which can be easily observed in boiling or falling waters, carbonated drinks, gas-forming electrochemical reactions, etc. However, the morphology and the growth dynamics of the bubbles at nanoscale have not been fully investigated owing to the lack of proper imaging tools that can visualize nanoscale objects in liquid phase. Here we demonstrate, for the first time, that the nanobubbles in water encapsulated by graphene membrane can be visualized by in situ ultrahigh vacuum transmission electron microscopy (UHV-TEM), showing the critical radius of nanobubbles determining its unusual long-term stability as well as two distinct growth mechanisms of merging nanobubbles (Ostwald ripening and coalescing) depending on their relative sizes. Interestingly, the gas transport through ultrathin water membranes at nanobubble interface is free from dissolution, which is clearly different from conventional gas transport that includes condensation, transmission and evaporation. Our finding is expected to provide a deeper insight to understand unusual chemical, biological and environmental phenomena where nanoscale gas-state is involved.
We present a hydrodynamic theory for electron-hole magnetotransport in graphene incorporating carrier-population imbalance, energy, and momentum relaxation processes. We focus on the electric response and find that the carrier and energy imbalance relaxation processes strongly modify the shear viscosity, so that an effective viscosity can be negative in the vicinity of charge neutrality. We predict an emergent eddy flow pattern of swirling currents and explore its manifestation in nonlocal resistivity oscillations in a strip of graphene driven by a source current.
Recently developed quantum algorithms suggest that in principle, quantum computers can solve problems such as simulation of physical systems more efficiently than classical computers. Much remains to be done to implement these conceptual ideas into actual quantum computers. As a small-scale demonstration of their capability, we simulate a simple many-fermion problem, the Fano-Anderson model, using liquid state Nuclear Magnetic Resonance (NMR). We carefully designed our experiment so that the resource requirement would scale up polynomially with the size of the quantum system to be simulated. The experimental results allow us to assess the limits of the degree of quantum control attained in these kinds of experiments. The simulation of other physical systems, with different particle statistics, is also discussed.
Accurate extraction of liquid is the first step towards low-volume liquid delivery and nanocharacterization, which plays a significant role in biomedical research. In this study, a tip-shaped graphene nanopipette (GNP) is proposed by encapsulating the biomolecule solution on the prefabricated metal tip with graphene. The volume of the encapsulated liquid is highly controllable at zeptoliter precision by tuning the encapsulating speed and the number of graphene encapsulation rounds. Using protein (ferritin) solution as an example, it has been confirmed by finite element analysis and the controlled experiments that the GNP allows the delivery of ferritin solution at the zeptoliter-scale. Furthermore, GNP is demonstrated as a new type of tip-shaped liquid cell, which is suitable for multiple nanocharacterization techniques. In particular, due to the ultra-sharp tip shape, isotope (13C)-labelled glucose solution encapsulated in GNP has been characterized by atom probe tomography (APT) in the laser-pulsed mode. Analysis of the mass spectrum and the reconstructed three-dimensional chemical maps reveals the quantitative distribution and the compositions of individual glucose molecules. The GNP is expected to be introduced to deliver liquid in the range of zeptoliters to attoliters, and brings a new capability for characterization of biological specimens in their near-native state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا