Do you want to publish a course? Click here

Economic Dispatch of an Integrated Microgrid Based on the Dynamic Process of CCGT Plant

72   0   0.0 ( 0 )
 Added by Huan Yin
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Intra-day economic dispatch of an integrated microgrid is a fundamental requirement to integrate distributed generators. The dynamic energy flows in cogeneration units present challenges to the energy management of the microgrid. In this paper, a novel approximate dynamic programming (ADP) approach is proposed to solve this problem based on value function approximation, which is distinct with the consideration of the dynamic process constraints of the combined-cycle gas turbine (CCGT) plant. First, we mathematically formulate the multi-time periods decision problem as a finite-horizon Markov decision process. To deal with the thermodynamic process, an augmented state vector of CCGT is introduced. Second, the proposed VFA-ADP algorithm is employed to derive the near-optimal real-time operation strategies. In addition, to guarantee the monotonicity of piecewise linear function, we apply the SPAR algorithm in the update process. To validate the effectiveness of the proposed method, we conduct experiments with comparisons to some traditional optimization methods. The results indicate that our proposed ADP method achieves better performance on the economic dispatch of the microgrid.



rate research

Read More

117 - Yue Song , David J. Hill , Tao Liu 2021
This paper introduces network flexibility into the chance constrained economic dispatch (CCED). In the proposed model, both power generations and line susceptances become variables to minimize the expected generation cost and guarantee a low probability of constraint violation in terms of generations and line flows under renewable uncertainties. We figure out the mechanism of network flexibility against uncertainties from the analytical form of CCED. On one hand, renewable uncertainties shrink the usable line capacities in the line flow constraints and aggravate transmission congestion. On the other hand, network flexibility significantly mitigates congestion by regulating the base-case line flows and reducing the line capacity shrinkage caused by uncertainties. Further, we propose an alternate iteration solver for this problem, which is efficient. With duality theory, we propose two convex subproblems with respect to generation-related variables and network-related variables, respectively. A satisfactory solution can be obtained by alternately solving these two subproblems. The case studies on the IEEE 14-bus system and IEEE 118-bus system suggest that network flexibility contributes much to operational economy under renewable uncertainties.
The control and managing of power demand and supply become very crucial because of penetration of renewables in the electricity networks and energy demand increase in residential and commercial sectors. In this paper, a new approach is presented to bridge the gap between Demand-Side Management (DSM) and microgrid portfolio, sizing and placement optimization. Although DSM helps energy consumers to take advantage of recent developments in utilization of Distributed Energy Resources (DERs) especially microgrids, a huge need of connecting DSM results to microgrid optimization is being felt. Consequently, a novel model that integrates the DSM techniques and microgrid modules in a two-layer configuration is proposed. In the first layer, DSM is employed to minimize the electricity demand (e.g. heating and cooling loads) based on zone temperature set-point. Using the optimal load profile obtained from the first layer, all investment and operation costs of a microgrid are then optimized in the second layer. The presented model is based on the existing optimization platform developed by RU-LESS (Rutgers University, Laboratory for Energy Smart Systems) team. As a demonstration, the developed model has been used to study the impact of smart HVAC control on microgrid compared to traditional HVAC control. The results show a noticeable reduction in total annual energy consumption and annual cost of microgrid.
In this paper, we investigate the problem of coordination between economic dispatch (ED) and demand response (DR) in multi-energy systems (MESs), aiming to improve the economic utility and reduce the waste of energy in MESs. Since multiple energy sources are coupled through energy hubs (EHs), the supply-demand constraints are nonconvex. To deal with this issue, we propose a linearization method to transform the coordination problem to a convex social welfare optimization one. Then a decentralized algorithm based on parallel Alternating Direction Method of Multipliers (ADMM) and dynamic average tracking protocol is developed, where each agent could only make decisions based on information from their neighbors. Moreover, by using variational inequality and Lyapunov-based techniques, we show that our algorithm could always converge to the global optimal solution. Finally, a case study on the modified IEEE 14-bus network verifies the feasibility and effectiveness of our algorithm.
With the large-scale integration of renewable power generation, frequency regulation resources (FRRs) are required to have larger capacities and faster ramp rates, which increases the cost of the frequency regulation ancillary service. Therefore, it is necessary to consider the frequency regulation cost and constraint along with real-time economic dispatch (RTED). In this paper, a data-driven distributionally robust optimization (DRO) method for RTED considering automatic generation control (AGC) is proposed. First, a Copula-based AGC signal model is developed to reflect the correlations among the AGC signal, load power and renewable generation variations. Secondly, samples of the AGC signal are taken from its conditional probability distribution under the forecasted load power and renewable generation variations. Thirdly, a distributionally robust RTED model considering the frequency regulation cost and constraint is built and transformed into a linear programming problem by leveraging the Wasserstein metric-based DRO technique. Simulation results show that the proposed method can reduce the total cost of power generation and frequency regulation.
As the concern about climate change and energy shortage grow stronger, the incorporation of renewable energy in the power system in the future is foreseeable. In a hybrid power system with a large penetration of PV generation, PV panel is regarded as a negative load in the power system. With the accurate prediction of PV output power, load frequency control could be done by controlling the thermal and hydro power plant in the system. Combined Cycle Power Plant is widely used because of its great advantages of fast response and high efficiency. This article is focusing on the mathematical modelling and analyzing of Combined Cycle Power Plant for the frequency control purpose in a model of hybrid system with large renewable energy generation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا