Do you want to publish a course? Click here

Decentralized Coordination Between Economic Dispatch and Demand Response in Multi-Energy Systems

81   0   0.0 ( 0 )
 Added by Zishun Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we investigate the problem of coordination between economic dispatch (ED) and demand response (DR) in multi-energy systems (MESs), aiming to improve the economic utility and reduce the waste of energy in MESs. Since multiple energy sources are coupled through energy hubs (EHs), the supply-demand constraints are nonconvex. To deal with this issue, we propose a linearization method to transform the coordination problem to a convex social welfare optimization one. Then a decentralized algorithm based on parallel Alternating Direction Method of Multipliers (ADMM) and dynamic average tracking protocol is developed, where each agent could only make decisions based on information from their neighbors. Moreover, by using variational inequality and Lyapunov-based techniques, we show that our algorithm could always converge to the global optimal solution. Finally, a case study on the modified IEEE 14-bus network verifies the feasibility and effectiveness of our algorithm.



rate research

Read More

This paper presents a distributed optimization algorithm tailored for solving optimal control problems arising in multi-building coordination. The buildings coordinated by a grid operator, join a demand response program to balance the voltage surge by using an energy cost defined criterion. In order to model the hierarchical structure of the building network, we formulate a distributed convex optimization problem with separable objectives and coupled affine equality constraints. A variant of the Augmented Lagrangian based Alternating Direction Inexact Newton (ALADIN) method for solving the considered class of problems is then presented along with a convergence guarantee. To illustrate the effectiveness of the proposed method, we compare it to the Alternating Direction Method of Multipliers (ADMM) by running both an ALADIN and an ADMM based model predictive controller on a benchmark case study.
93 - Yang Li , Bin Wang , Zhen Yang 2021
The community integrated energy system (CIES) is an essential energy internet carrier that has recently been the focus of much attention. A scheduling model based on chance-constrained programming is proposed for integrated demand response (IDR)-enabled CIES in uncertain environments to minimize the system operating costs, where an IDR program is used to explore the potential interaction ability of electricity-gas-heat flexible loads and electric vehicles. Moreover, power to gas (P2G) and micro-gas turbine (MT), as links of multi-energy carriers, are adopted to strengthen the coupling of different energy subsystems. Sequence operation theory (SOT) and linearization methods are employed to transform the original model into a solvable mixed-integer linear programming model. Simulation results on a practical CIES in North China demonstrate an improvement in the CIES operational economy via the coordination of IDR and renewable uncertainties, with P2G and MT enhancing the system operational flexibility and user comprehensive satisfaction. The CIES operation is able to achieve a trade-off between economy and system reliability by setting a suitable confidence level for the spinning reserve constraints. Besides, the proposed solution method outperforms the Hybrid Intelligent Algorithm in terms of both optimization results and calculation efficiency.
This paper proposes decentralized resource-aware coordination schemes for solving network optimization problems defined by objective functions which combine locally evaluable costs with network-wide coupling components. These methods are well suited for a group of supervised agents trying to solve an optimization problem under mild coordination requirements. Each agent has information on its local cost and coordinates with the network supervisor for information about the coupling term of the cost. The proposed approach is feedback-based and asynchronous by design, guarantees anytime feasibility, and ensures the asymptotic convergence of the network state to the desired optimizer. Numerical simulations on a power system example illustrate our results.
117 - Yue Song , David J. Hill , Tao Liu 2021
This paper introduces network flexibility into the chance constrained economic dispatch (CCED). In the proposed model, both power generations and line susceptances become variables to minimize the expected generation cost and guarantee a low probability of constraint violation in terms of generations and line flows under renewable uncertainties. We figure out the mechanism of network flexibility against uncertainties from the analytical form of CCED. On one hand, renewable uncertainties shrink the usable line capacities in the line flow constraints and aggravate transmission congestion. On the other hand, network flexibility significantly mitigates congestion by regulating the base-case line flows and reducing the line capacity shrinkage caused by uncertainties. Further, we propose an alternate iteration solver for this problem, which is efficient. With duality theory, we propose two convex subproblems with respect to generation-related variables and network-related variables, respectively. A satisfactory solution can be obtained by alternately solving these two subproblems. The case studies on the IEEE 14-bus system and IEEE 118-bus system suggest that network flexibility contributes much to operational economy under renewable uncertainties.
The control and managing of power demand and supply become very crucial because of penetration of renewables in the electricity networks and energy demand increase in residential and commercial sectors. In this paper, a new approach is presented to bridge the gap between Demand-Side Management (DSM) and microgrid portfolio, sizing and placement optimization. Although DSM helps energy consumers to take advantage of recent developments in utilization of Distributed Energy Resources (DERs) especially microgrids, a huge need of connecting DSM results to microgrid optimization is being felt. Consequently, a novel model that integrates the DSM techniques and microgrid modules in a two-layer configuration is proposed. In the first layer, DSM is employed to minimize the electricity demand (e.g. heating and cooling loads) based on zone temperature set-point. Using the optimal load profile obtained from the first layer, all investment and operation costs of a microgrid are then optimized in the second layer. The presented model is based on the existing optimization platform developed by RU-LESS (Rutgers University, Laboratory for Energy Smart Systems) team. As a demonstration, the developed model has been used to study the impact of smart HVAC control on microgrid compared to traditional HVAC control. The results show a noticeable reduction in total annual energy consumption and annual cost of microgrid.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا