Do you want to publish a course? Click here

Nature of electrostatic fluctuations in the terrestrial magnetosheath

399   0   0.0 ( 0 )
 Added by Silvia Perri
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The high cadence plasma, electric, and magnetic field measurements by the Magnetospheric MultiScale spacecraft allow us to explore the near-Earth space plasma with an unprecedented time and spatial resolution, resolving electron-scale structures that naturally emerge from plasma complex dynamics. The formation of small-scale turbulent features is often associated to structured, non-Maxwellian particle velocity distribution functions that are not at thermodynamic equilibrium. Using measurements in the terrestrial magnetosheath, this study focuses on regions presenting bumps in the power spectral density of the parallel electric field at sub-proton scales. Correspondingly, it is found that the ion velocity distribution functions exhibit beam-like features at nearly the local ion thermal speed. Ion cyclotron waves in the ion-scale range are frequently observed at the same locations. These observations, supported by numerical simulations, are consistent with the generation of ion-bulk waves that propagate at the ion thermal speed. This represents a new branch of efficient energy transfer at small scales, which may be relevant to weakly collisional astrophysical plasmas.



rate research

Read More

Recent results of numerical magnetohydrodynamic simulations suggest that in collisionless space plasmas turbulence can spontaneously generate thin current sheets. These coherent structures can partially explain intermittency and the non-homogenous distribution of localized plasma heating in turbulence. In this Letter Cluster multi-point observations are used to investigate the distribution of magnetic field discontinuities and the associated small-scale current sheets in the terrestrial magnetosheath downstream of a quasi-parallel bow shock. It is shown experimentally, for the first time, that the strongest turbulence generated current sheets occupy the long tails of probability distribution functions (PDFs) associated with extremal values of magnetic field partial derivatives. During the analyzed one hour long time interval, about a hundred strong discontinuities, possibly proton-scale current sheets were observed.
A familiar problem in space and astrophysical plasmas is to understand how dissipation and heating occurs. These effects are often attributed to the cascade of broadband turbulence which transports energy from large scale reservoirs to small scale kinetic degrees of freedom. When collisions are infrequent, local thermodynamic equilibrium is not established. In this case the final stage of energy conversion becomes more complex than in the fluid case, and both pressure-dilatation and pressure strain interactions (Pi-D $equiv -Pi_{ij} D_{ij}$) become relevant and potentially important. Pi-D in plasma turbulence has been studied so far primarily using simulations. The present study provides a statistical analysis of Pi-D in the Earths magnetosheath using the unique measurement capabilities of the Magnetospheric Multiscale (MMS) mission. We find that the statistics of Pi-D in this naturally occurring plasma environment exhibit strong resemblance to previously established fully kinetic simulations results. The conversion of energy is concentrated in space and occurs near intense current sheets, but not within them. This supports recent suggestions that the chain of energy transfer channels involves regional, rather than pointwise, correlations.
In the solar wind, power spectral density (PSD) of the magnetic field fluctuations generally follow the so-called Kolmogorov spectrum f^-5/3 in the inertial range, where the dynamics is thought to be dominated by nonlinear interactions between counter-propagating incompressible Alfven wave parquets. These features are thought to be ubiquitous in space plasmas. The present study gives a new and more complex picture of magnetohydrodynamics (MHD) turbulence as observed in the terrestrial magnetosheath. The study uses three years of in-situ data from the Cluster mission to explore the nature of the magnetic fluctuations at MHD scales in different locations within the magnetosheath, including flanks and subsolar regions. It is found that the magnetic field fluctuations at MHD scales generally have a PSD close to f^-1 (shallower than the Kolmogorov one f^-5/3) down to the ion characteristic scale, which recalls the energy containing scales of solar wind turbulence. The Kolmogorov spectrum is observed only away from the bow shock toward the flank and the magnetopause regions in 17% of the analyzed time intervals. Measuring the magnetic compressibility, it is shown that only a fraction (35%) of the observed Kolmogorov spectra were populated by shear Alfvenic fluctuations, whereas the majority of the events (65%) was found to be dominated by compressible magnetosonic-like fluctuations, which contrasts with well-known turbulence properties in the solar wind. This study gives a first comprehensive view of the origin of the f^-1 and the transition to the Kolmogorov inertial range; both questions remain controversial in solar wind turbulence.
The electron beam-plasma system is ubiquitous in the space plasma environment. Here, using a Darwin particle-in-cell method, the excitation of electrostatic and whistler instabilities by a gyrating electron beam is studied in support of recent laboratory experiments. It is assumed that the total plasma frequency $omega_{pe}$ is larger than the electron cyclotron frequency $Omega_e$. The fast-growing electrostatic beam-mode waves saturate in a few plasma oscillations by slowing down and relaxing the electron beam parallel to the background magnetic field. Upon their saturation, the finite amplitude electrostatic beam-mode waves can resonate with the tail of the background thermal electrons and accelerate them to the beam parallel velocity. The slower-growing whistler waves are excited in primarily two resonance modes: (a) through Landau resonance due to the inverted slope of the beam electrons in the parallel velocity; (b) through cyclotron resonance by scattering electrons to both lower pitch angles and smaller energies. It is demonstrated that, for a field-aligned beam, the whistler instability can be suppressed by the electrostatic instability due to a faster energy transfer rate between beam electrons and the electrostatic waves. Such a competition of growth between whistler and electrostatic waves depends on the ratio of $omega_{pe}/Omega_e$. In terms of wave propagation, beam-generated electrostatic waves are confined to the beam region whereas beam-generated whistler waves transport energy away from the beam.
Full orbit dynamics of charged particles in a $3$-dimensional helical magnetic field in the presence of $alpha$-stable Levy electrostatic fluctuations and linear friction modeling collisional Coulomb drag is studied via Monte Carlo numerical simulations. The Levy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space resulting from intermittent electrostatic turbulence. The probability distribution functions of energy, particle displacements, and Larmor radii are computed and showed to exhibit a transition from exponential decay, in the case of Gaussian fluctuations, to power law decay in the case of Levy fluctuations. The absolute value of the power law decay exponents are linearly proportional to the Levy index $alpha$. The observed anomalous non-Gaussian statistics of the particles Larmor radii (resulting from outlier transport events) indicate that, when electrostatic turbulent fluctuations exhibit non-Gaussian Levy statistics, gyro-averaging and guiding centre approximations might face limitations and full particle orbit effects should be taken into account.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا