Do you want to publish a course? Click here

Statistics of Kinetic Dissipation in Earths Magnetosheath -- MMS Observations

114   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A familiar problem in space and astrophysical plasmas is to understand how dissipation and heating occurs. These effects are often attributed to the cascade of broadband turbulence which transports energy from large scale reservoirs to small scale kinetic degrees of freedom. When collisions are infrequent, local thermodynamic equilibrium is not established. In this case the final stage of energy conversion becomes more complex than in the fluid case, and both pressure-dilatation and pressure strain interactions (Pi-D $equiv -Pi_{ij} D_{ij}$) become relevant and potentially important. Pi-D in plasma turbulence has been studied so far primarily using simulations. The present study provides a statistical analysis of Pi-D in the Earths magnetosheath using the unique measurement capabilities of the Magnetospheric Multiscale (MMS) mission. We find that the statistics of Pi-D in this naturally occurring plasma environment exhibit strong resemblance to previously established fully kinetic simulations results. The conversion of energy is concentrated in space and occurs near intense current sheets, but not within them. This supports recent suggestions that the chain of energy transfer channels involves regional, rather than pointwise, correlations.



rate research

Read More

In the present paper, we investigate the power-law behaviour of the magnetic field spectra in the Earths magnetosheath region using Cluster spacecraft data under solar minimum condition. The power spectral density of the magnetic field data and spectral slopes at various frequencies are analysed. Propagation angle and compressibility are used to test the nature of turbulent fluctuations. The magnetic field spectra have the spectral slopes between -1.5 to 0 down to spatial scales of 20 ion gyroradius and show clear evidence of a transition to steeper spectra for small scales with a second power-law, having slopes between -2.6 to -1.8. At low frequencies, f_sc<0.3f_ci(where f_ci is ion gyro-frequency), propagation angle approximately 90 degrees to the mean magnetic field, B_0, and compressibility shows a broad distribution, 0.1 < R > 0.9. On the other hand at f_sc>10f_ci, the propagation angle exhibits a broad range between 30-90 degree while R has a small variation: 0.2 < R > 0.5. We conjecture that at high frequencies, the perpendicularly propagating Alfven waves could partly explain the statistical analysis of spectra. To support our prediction of kinetic Alfven wave-dominated spectral slope behaviour at high frequency, we also present a theoretical model and simulate the magnetic field turbulence spectra due to the nonlinear evolution of kinetic Alfven waves. The present study also shows the analogy between the observational and simulated spectra.
Magnetic reconnection (MR) and the associated concurrently occurring waves have been extensively studied at large-scale plasma boundaries, in quasi-symmetric and asymmetric configurations in the terrestrial magnetotail and at the magnetopause. Recent high-resolution observations by MMS (Magnetospheric Multiscale) spacecraft indicate that MR can occur also in the magnetosheath where the conditions are highly turbulent when the upstream shock geometry is quasi-parallel. The strong turbulent motions make the boundary conditions for evolving MR complicated. In this paper it is demonstrated that the wave observations in localized regions of MR can serve as an additional diagnostic tool reinforcing our capacity for identifying MR events in turbulent plasmas. It is shown that in a close resemblance with MR at large-scale boundaries, turbulent reconnection associated whistler waves occur at separatrix/outflow regions and at the outer boundary of the electron diffusion region, while lower hybrid drift waves are associated with density gradients during the crossing of the current sheet. The lower hybrid drift instability can make the density inhomogeneities rippled. The identification of MR associated waves in the magnetosheath represents also an important milestone for developing a better understanding of energy redistribution and dissipation in turbulent plasmas.
Protons (ionized hydrogen) in the solar wind frequently exhibit distinct temperatures ($T_{perp p}$ and $T_{parallel p}$) perpendicular and parallel to the plasmas background magnetic-field. Numerous prior studies of the interplanetary solar-wind have shown that, as plasma beta ($beta_{parallel p}$) increases, a narrower range of temperature-anisotropy ($R_pequiv T_{perp p},/,T_{parallel p}$) values is observed. Conventionally, this effect has been ascribed to the actions of kinetic microinstabilities. This study is the first to use data from the Magnetospheric Multiscale Mission (MMS) to explore such $beta_{parallel p}$-dependent limits on $R_p$ in Earths magnetosheath. The distribution of these data across the $(beta_{parallel p},R_p)$-plane reveals limits on both $R_p>1$ and $R_p<1$. Linear Vlasov theory is used to compute contours of constant growth-rate for the ion-cyclotron, mirror, parallel-firehose, and oblique-firehose instabilities. These instability thresholds closely align with the contours of the data distribution, which suggests a strong association of instabilities with extremes of ion temperature anisotropy in the magnetosheath. The potential for instabilities to regulate temperature anisotropy is discussed.
Studies of shocks have long suggested that a shock can undergo cyclically self-reformation in a time scale of ion cyclotron period. This process has been proposed as a primary mechanism for energy dissipation and energetic particle acceleration at shocks. Unambiguous observational evidence, however, has remained elusive. Here, we report direct observations for the self-reformation process of a collisionless, high Mach number, quasi-perpendicular shock using MMS measurements. We find that reflected ions by the old shock ramp form a clear phase-space vortex, which gives rise to a new ramp. The new ramp observed by MMS2 has not yet developed to a mature stage during the self-reformation, and is not strong enough to reflect incident ions. Consequently, these ions are only slightly slowed down and show a flat velocity profile from the new ramp all the way to the old one. The present results provide direct evidence for shock self-reformation, and also shed light on energy dissipation and energetic particle acceleration at collisionless shocks throughout the universe.
The high cadence plasma, electric, and magnetic field measurements by the Magnetospheric MultiScale spacecraft allow us to explore the near-Earth space plasma with an unprecedented time and spatial resolution, resolving electron-scale structures that naturally emerge from plasma complex dynamics. The formation of small-scale turbulent features is often associated to structured, non-Maxwellian particle velocity distribution functions that are not at thermodynamic equilibrium. Using measurements in the terrestrial magnetosheath, this study focuses on regions presenting bumps in the power spectral density of the parallel electric field at sub-proton scales. Correspondingly, it is found that the ion velocity distribution functions exhibit beam-like features at nearly the local ion thermal speed. Ion cyclotron waves in the ion-scale range are frequently observed at the same locations. These observations, supported by numerical simulations, are consistent with the generation of ion-bulk waves that propagate at the ion thermal speed. This represents a new branch of efficient energy transfer at small scales, which may be relevant to weakly collisional astrophysical plasmas.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا