Do you want to publish a course? Click here

Observation of Superconductivity Induced Ferromagnetism in an Fe-Chalcogenide Superconductor

121   0   0.0 ( 0 )
 Added by Chunhui Du
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The interplay among topology, superconductivity, and magnetism promises to bring a plethora of exotic and unintuitive behaviors in emergent quantum materials. The family of Fe-chalcogenide superconductors FeTexSe1-x are directly relevant in this context due to their intrinsic topological band structure, high-temperature superconductivity, and unconventional pairing symmetry. Despite enormous promise and expectation, the local magnetic properties of FeTexSe1-x remain largely unexplored, which prevents a comprehensive understanding of their underlying material properties. Exploiting nitrogen vacancy (NV) centers in diamond, here we report nanoscale quantum sensing and imaging of magnetic flux generated by exfoliated FeTexSe1-x flakes, providing clear evidence of superconductivity-induced ferromagnetism in FeTexSe1-x. The coexistence of superconductivity and ferromagnetism in an established topological superconductor opens up new opportunities for exploring exotic spin and charge transport phenomena in quantum materials. The demonstrated coupling between NV centers and FeTexSe1-x may also find applications in developing hybrid architectures for next-generation, solid-state-based quantum information technologies.



rate research

Read More

76 - A. Ricci , G. Campi , B. Joseph 2020
Coexistence of phases, characterized by different electronic degrees of freedom, commonly occurs in layered superconductors. Among them, alkaline intercalated chalcogenides are model systems showing microscale coexistence of paramagnetic (PAR) and antiferromagnetic (AFM) phases, however, temporal behavior of different phases is still unknown. Here, we report the first visualization of the atomic motion in the granular phase of K$_{x}$Fe$_{2-y}$Se$_2$ using X-ray photon correlation spectroscopy. Unlike the PAR phase, the AFM texture reveals an intermittent dynamics with avalanches as in martensites. When cooled down across the superconducting transition temperature T$_c$, the AFM phase goes through an anomalous slowing behavior suggesting a direct relationship between the atomic motions in the AFM phase and the superconductivity. In addition of providing a compelling evidence of avalanche-like dynamics in a layered superconductor, the results provide a basis for new theoretical models to describe quantum states in inhomogeneous solids.
Superconducting topological crystalline insulators (TCI) are predicted to host new topological phases protected by crystalline symmetries, but available materials are insufficiently suitable for surface studies. To induce superconductivity at the surface of a prototypical TCI SnTe, we use molecular beam epitaxy to grow a heterostructure of SnTe and a high-Tc superconductor Fe(Te,Se), utilizing a buffer layer to bridge the large lattice mismatch between SnTe and Fe(Te,Se). Using low-temperature scanning tunneling microscopy and spectroscopy, we measure a prominent spectral gap on the surface of SnTe, and demonstrate its superconducting origin by its dependence on temperature and magnetic field. Our work provides a new platform for atomic-scale investigations of emergent topological phenomena in superconducting TCIs.
We present an in-depth classification of the topological phases and Majorana fermion (MF) excitations that arise from the bulk interplay between unconventional multiband spin-singlet superconductivity and various magnetic textures. We focus on magnetic texture crystals with a periodically-repeating primitive cell of the helix, whirl, and skyrmion types. Our analysis is relevant for a wide range of layered materials and hybrid devices, and accounts for both strong and weak, as well as crystalline topological phases. We identify a multitude of accessible topological phases which harbor flat, uni- or bi-directional, (quasi-)helical, or chiral MF edge modes. This rich variety of MFs originates from the interplay between topological phases with gapped and nodal bulk energy spectra, with the resulting types of spectra and MFs controlled by the size of the pairing and magnetic gaps.
104 - Tian Le , Qikai Ye , Chufan Chen 2021
Three-dimensional topological insulators (TIs) attract much attention due to its topologically protected Dirac surface states. Doping into TIs or their proximity with normal superconductors can promote the realization of topological superconductivity(SC) and Majorana fermions with potential applications in quantum computations. Here, an emergent superconductivity was observed in local mesoscopic point-contacts on the topological insulator Bi2Se3 by applying a voltage pulse through the contacts, evidenced by the Andreev reflection peak in the point-contact spectra and a visible resistance drop in the four-probe electrical resistance measurements. More intriguingly, the superconductivity can be erased with thermal cycles by warming up to high temperatures (300 K) and induced again by the voltage pulse at the base temperature (1.9 K), suggesting a significance for designing new types of quantum devices. Nematic behaviour is also observed in the superconducting state, similar to the case of CuxBi2Se3 as topological superconductor candidates.
The Weyl semimetal MoTe$_2$ offers a rare opportunity to study the interplay between Weyl physics and superconductivity. Recent studies have found that Se substitution can boost the superconductivity up to 1.5K, but suppress the Td structure phase that is essential for the emergence of Weyl state. A microscopic understanding of possible coexistence of enhanced superconductivity and the Td phase has not been established so far. Here, we use scanning tunneling microscopy (STM) to study a optimally doped new superconductor MoTe$_{1.85}$Se$_{0.15}$ with bulk Tc ~ 1.5K. By means of quasiparticle interference imaging, we identify the existence of low temperature Td phase with broken inversion symmetry where superconductivity globally coexists. Consistently, we find that the superconducting coherence length, extracted from both the upper critical field and the decay of density of states near a vortex, is much larger than the characteristic length scale of existing dopant derived chemical disorder. Our findings of robust superconductivity arising from a Weyl semimetal normal phase in MoTe$_{1.85}$Se$_{0.15}$, makes it a promising candidate for realizing topological superconductivity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا