Do you want to publish a course? Click here

Erasable superconductivity in topological insulator Bi2Se3 induced by voltage pulse

105   0   0.0 ( 0 )
 Added by Tian Le
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Three-dimensional topological insulators (TIs) attract much attention due to its topologically protected Dirac surface states. Doping into TIs or their proximity with normal superconductors can promote the realization of topological superconductivity(SC) and Majorana fermions with potential applications in quantum computations. Here, an emergent superconductivity was observed in local mesoscopic point-contacts on the topological insulator Bi2Se3 by applying a voltage pulse through the contacts, evidenced by the Andreev reflection peak in the point-contact spectra and a visible resistance drop in the four-probe electrical resistance measurements. More intriguingly, the superconductivity can be erased with thermal cycles by warming up to high temperatures (300 K) and induced again by the voltage pulse at the base temperature (1.9 K), suggesting a significance for designing new types of quantum devices. Nematic behaviour is also observed in the superconducting state, similar to the case of CuxBi2Se3 as topological superconductor candidates.



rate research

Read More

Superconducting topological crystalline insulators (TCI) are predicted to host new topological phases protected by crystalline symmetries, but available materials are insufficiently suitable for surface studies. To induce superconductivity at the surface of a prototypical TCI SnTe, we use molecular beam epitaxy to grow a heterostructure of SnTe and a high-Tc superconductor Fe(Te,Se), utilizing a buffer layer to bridge the large lattice mismatch between SnTe and Fe(Te,Se). Using low-temperature scanning tunneling microscopy and spectroscopy, we measure a prominent spectral gap on the surface of SnTe, and demonstrate its superconducting origin by its dependence on temperature and magnetic field. Our work provides a new platform for atomic-scale investigations of emergent topological phenomena in superconducting TCIs.
194 - Fan Yang , Fanming Qu , Jie Shen 2012
We have studied the electron transport properties of topological insulator-related material Bi2Se3 near the superconducting Pb-Bi2Se3 interface, and found that a superconducting state is induced over an extended volume in Bi2Se3. This state can carry a Josephson supercurrent, and demonstrates a gap-like structure in the conductance spectra as probed by a normal-metal electrode. The establishment of the gap is not by confining the electrons into a narrow space close to the superconductor-normal metal interface, as previously observed in other systems, but presumably via electron-electron attractive interaction in Bi2Se3.
We present an in-depth classification of the topological phases and Majorana fermion (MF) excitations that arise from the bulk interplay between unconventional multiband spin-singlet superconductivity and various magnetic textures. We focus on magnetic texture crystals with a periodically-repeating primitive cell of the helix, whirl, and skyrmion types. Our analysis is relevant for a wide range of layered materials and hybrid devices, and accounts for both strong and weak, as well as crystalline topological phases. We identify a multitude of accessible topological phases which harbor flat, uni- or bi-directional, (quasi-)helical, or chiral MF edge modes. This rich variety of MFs originates from the interplay between topological phases with gapped and nodal bulk energy spectra, with the resulting types of spectra and MFs controlled by the size of the pairing and magnetic gaps.
150 - Shruti , V. K. Maurya , P. Neha 2015
Strontium intercalation between van der Waals bonded layers of topological insulator Bi2Se3 is found to induce superconductivity with a maximum Tc of 2.9 K. Transport measurement on single crystal of optimally doped sample Sr0.1Bi2Se3 shows weak anisotropy (1.5) and upper critical field Hc2(0) equals to 2.1 T for magnetic field applied per-pendicular to c -axis of the sample. The Ginzburg-Landau coherence lengths are Xi-ab = 15.3 {AA} and Xi_c = 10.2 {AA}. The lower critical field and zero temperature penetration depth Lambda(0) are estimated to be 0.35 mT and 1550 nm respectively. Hall and Seebeck measurements confirm the dominance of electronic conduction and the carrier concentration is surprisingly low (n = 1.85 x 10^19 cm-3) at 10 K indicating possibility of unconventional superconductivity.
Bulk superconductivity has been discovered in Tl_{0.6}Bi_{2}Te_{3}, which is derived from the topological insulator Bi2Te3. The superconducting volume fraction of up to 95% (determined from specific heat) with Tc of 2.28 K was observed. The carriers are p-type with the density of ~1.8 x 10^{20} cm^{-3}. Resistive transitions under magnetic fields point to an unconventional temperature dependence of the upper critical field B_{c2}. The crystal structure appears to be unchanged from Bi2Te3 with a shorter c-lattice parameter, which, together with the Rietveld analysis, suggests that Tl ions are incorporated but not intercalated. This material is an interesting candidate of a topological superconductor which may be realized by the strong spin-orbit coupling inherent to topological insulators.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا