Do you want to publish a course? Click here

Predicting the Solar Potential of Rooftops using Image Segmentation and Structured Data

64   0   0.0 ( 0 )
 Added by Daniel Soares
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Estimating the amount of electricity that can be produced by rooftop photovoltaic systems is a time-consuming process that requires on-site measurements, a difficult task to achieve on a large scale. In this paper, we present an approach to estimate the solar potential of rooftops based on their location and architectural characteristics, as well as the amount of solar radiation they receive annually. Our technique uses computer vision to achieve semantic segmentation of roof sections and roof objects on the one hand, and a machine learning model based on structured building features to predict roof pitch on the other hand. We then compute the azimuth and maximum number of solar panels that can be installed on a rooftop with geometric approaches. Finally, we compute precise shading masks and combine them with solar irradiation data that enables us to estimate the yearly solar potential of a rooftop.



rate research

Read More

Over the last few decades, deforestation and climate change have caused increasing number of forest fires. In Southeast Asia, Indonesia has been the most affected country by tropical peatland forest fires. These fires have a significant impact on the climate resulting in extensive health, social and economic issues. Existing forest fire prediction systems, such as the Canadian Forest Fire Danger Rating System, are based on handcrafted features and require installation and maintenance of expensive instruments on the ground, which can be a challenge for developing countries such as Indonesia. We propose a novel, cost-effective, machine-learning based approach that uses remote sensing data to predict forest fires in Indonesia. Our prediction model achieves more than 0.81 area under the receiver operator characteristic (ROC) curve, performing significantly better than the baseline approach which never exceeds 0.70 area under ROC curve on the same tasks. Our models performance remained above 0.81 area under ROC curve even when evaluated with reduced data. The results support our claim that machine-learning based approaches can lead to reliable and cost-effective forest fire prediction systems.
The ability to predict and therefore to anticipate the future is an important attribute of intelligence. It is also of utmost importance in real-time systems, e.g. in robotics or autonomous driving, which depend on visual scene understanding for decision making. While prediction of the raw RGB pixel values in future video frames has been studied in previous work, here we introduce the novel task of predicting semantic segmentations of future frames. Given a sequence of video frames, our goal is to predict segmentation maps of not yet observed video frames that lie up to a second or further in the future. We develop an autoregressive convolutional neural network that learns to iteratively generate multiple frames. Our results on the Cityscapes dataset show that directly predicting future segmentations is substantially better than predicting and then segmenting future RGB frames. Prediction results up to half a second in the future are visually convincing and are much more accurate than those of a baseline based on warping semantic segmentations using optical flow.
124 - Mayank Jain , Conor Meegan , 2021
While cloud/sky image segmentation has extensive real-world applications, a large amount of labelled data is needed to train a highly accurate models to perform the task. Scarcity of such volumes of cloud/sky images with corresponding ground-truth binary maps makes it highly difficult to train such complex image segmentation models. In this paper, we demonstrate the effectiveness of using Generative Adversarial Networks (GANs) to generate data to augment the training set in order to increase the prediction accuracy of image segmentation model. We further present a way to estimate ground-truth binary maps for the GAN-generated images to facilitate their effective use as augmented images. Finally, we validate our work with different statistical techniques.
Deep learning has shown promising results in medical image analysis, however, the lack of very large annotated datasets confines its full potential. Although transfer learning with ImageNet pre-trained classification models can alleviate the problem, constrained image sizes and model complexities can lead to unnecessary increase in computational cost and decrease in performance. As many common morphological features are usually shared by different classification tasks of an organ, it is greatly beneficial if we can extract such features to improve classification with limited samples. Therefore, inspired by the idea of curriculum learning, we propose a strategy for building medical image classifiers using features from segmentation networks. By using a segmentation network pre-trained on similar data as the classification task, the machine can first learn the simpler shape and structural concepts before tackling the actual classification problem which usually involves more complicated concepts. Using our proposed framework on a 3D three-class brain tumor type classification problem, we achieved 82% accuracy on 191 testing samples with 91 training samples. When applying to a 2D nine-class cardiac semantic level classification problem, we achieved 86% accuracy on 263 testing samples with 108 training samples. Comparisons with ImageNet pre-trained classifiers and classifiers trained from scratch are presented.
The data-driven nature of deep learning models for semantic segmentation requires a large number of pixel-level annotations. However, large-scale and fully labeled medical datasets are often unavailable for practical tasks. Recently, partially supervised methods have been proposed to utilize images with incomplete labels to mitigate the data scarcity problem in the medical domain. As an emerging research area, the breakthroughs made by existing methods rely on either large-scale data or complex model design, which makes them 1) less practical for certain real-life tasks and 2) less robust for small-scale data. It is time to step back and think about the robustness of partially supervised methods and how to maximally utilize small-scale and partially labeled data for medical image segmentation tasks. To bridge the methodological gaps in label-efficient deep learning with partial supervision, we propose RAMP, a simple yet efficient data augmentation framework for partially supervised medical image segmentation by exploiting the assumption that patients share anatomical similarities. We systematically evaluate RAMP and the previous methods in various controlled multi-structure segmentation tasks. Compared to the mainstream approaches, RAMP consistently improves the performance of traditional segmentation networks on small-scale partially labeled data and utilize additional image-wise weak annotations.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا