No Arabic abstract
Semi-supervised learning is a challenging problem which aims to construct a model by learning from a limited number of labeled examples. Numerous methods have been proposed to tackle this problem, with most focusing on utilizing the predictions of unlabeled instances consistency alone to regularize networks. However, treating labeled and unlabeled data separately often leads to the discarding of mass prior knowledge learned from the labeled examples, and failure to mine the feature interaction between the labeled and unlabeled image pairs. In this paper, we propose a novel method for semi-supervised semantic segmentation named GuidedMix-Net, by leveraging labeled information to guide the learning of unlabeled instances. Specifically, we first introduce a feature alignment objective between labeled and unlabeled data to capture potentially similar image pairs and then generate mixed inputs from them. The proposed mutual information transfer (MITrans), based on the cluster assumption, is shown to be a powerful knowledge module for further progressive refining features of unlabeled data in the mixed data space. To take advantage of the labeled examples and guide unlabeled data learning, we further propose a mask generation module to generate high-quality pseudo masks for the unlabeled data. Along with supervised learning for labeled data, the prediction of unlabeled data is jointly learned with the generated pseudo masks from the mixed data. Extensive experiments on PASCAL VOC 2012, PASCAL-Context and Cityscapes demonstrate the effectiveness of our GuidedMix-Net, which achieves competitive segmentation accuracy and significantly improves the mIoU by +7$%$ compared to previous state-of-the-art approaches.
Deep neural networks (DNNs) have achieved great success in a wide variety of medical image analysis tasks. However, these achievements indispensably rely on the accurately-annotated datasets. If with the noisy-labeled images, the training procedure will immediately encounter difficulties, leading to a suboptimal classifier. This problem is even more crucial in the medical field, given that the annotation quality requires great expertise. In this paper, we propose an effective iterative learning framework for noisy-labeled medical image classification, to combat the lacking of high quality annotated medical data. Specifically, an online uncertainty sample mining method is proposed to eliminate the disturbance from noisy-labeled images. Next, we design a sample re-weighting strategy to preserve the usefulness of correctly-labeled hard samples. Our proposed method is validated on skin lesion classification task, and achieved very promising results.
In this work we predict vehicle speed and steering angle given camera image frames. Our key contribution is using an external pre-trained neural network for segmentation. We augment the raw images with their segmentation masks and mirror images. We ensemble three diverse neural network models (i) a CNN using a single image and its segmentation mask, (ii) a stacked CNN taking as input a sequence of images and segmentation masks, and (iii) a bidirectional GRU, extracting image features using a pre-trained ResNet34, DenseNet121 and our own CNN single image model. We achieve the second best performance for MSE angle and second best performance overall, to win 2nd place in the ICCV Learning to Drive challenge. We make our models and code publicly available.
In many real-world datasets, like WebVision, the performance of DNN based classifier is often limited by the noisy labeled data. To tackle this problem, some image related side information, such as captions and tags, often reveal underlying relationships across images. In this paper, we present an efficient weakly supervised learning by using a Side Information Network (SINet), which aims to effectively carry out a large scale classification with severely noisy labels. The proposed SINet consists of a visual prototype module and a noise weighting module. The visual prototype module is designed to generate a compact representation for each category by introducing the side information. The noise weighting module aims to estimate the correctness of each noisy image and produce a confidence score for image ranking during the training procedure. The propsed SINet can largely alleviate the negative impact of noisy image labels, and is beneficial to train a high performance CNN based classifier. Besides, we released a fine-grained product dataset called AliProducts, which contains more than 2.5 million noisy web images crawled from the internet by using queries generated from 50,000 fine-grained semantic classes. Extensive experiments on several popular benchmarks (i.e. Webvision, ImageNet and Clothing-1M) and our proposed AliProducts achieve state-of-the-art performance. The SINet has won the first place in the classification task on WebVision Challenge 2019, and outperformed other competitors by a large margin.
To build an interpretable neural text classifier, most of the prior work has focused on designing inherently interpretable models or finding faithful explanations. A new line of work on improving model interpretability has just started, and many existing methods require either prior information or human annotations as additional inputs in training. To address this limitation, we propose the variational word mask (VMASK) method to automatically learn task-specific important words and reduce irrelevant information on classification, which ultimately improves the interpretability of model predictions. The proposed method is evaluated with three neural text classifiers (CNN, LSTM, and BERT) on seven benchmark text classification datasets. Experiments show the effectiveness of VMASK in improving both model prediction accuracy and interpretability.
Radar sensors are an important part of driver assistance systems and intelligent vehicles due to their robustness against all kinds of adverse conditions, e.g., fog, snow, rain, or even direct sunlight. This robustness is achieved by a substantially larger wavelength compared to light-based sensors such as cameras or lidars. As a side effect, many surfaces act like mirrors at this wavelength, resulting in unwanted ghost detections. In this article, we present a novel approach to detect these ghost objects by applying data-driven machine learning algorithms. For this purpose, we use a large-scale automotive data set with annotated ghost objects. We show that we can use a state-of-the-art automotive radar classifier in order to detect ghost objects alongside real objects. Furthermore, we are able to reduce the amount of false positive detections caused by ghost images in some settings.