Do you want to publish a course? Click here

Generalizing event shapes: In search of lost collider time

61   0   0.0 ( 0 )
 Added by Alexander Zhiboedov
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We introduce a new class of collider-type observables in conformal field theories which we call generalized event shapes. They are defined as matrix elements of light-ray operators that are sensitive to the longitudinal, or time-dependent, structure of the state produced in the collision. Generalized event shapes can be studied using both correlation functions and scattering amplitudes. They are infrared finite and smoothly transit over to the familiar event shapes. We compute them in planar ${cal N}=4$ super-Yang-Mills theory at weak and strong coupling, and study their physical properties. We show that at strong coupling both the stringy and quantum-gravitational corrections to the energy-energy correlation exhibit longitudinal broadening that manifests itself through the presence of long-time tails in the energy flux measured by the detectors.

rate research

Read More

We present a method for calculating event shapes in QCD based on correlation functions of conserved currents. The method has been previously applied to the maximally supersymmetric Yang-Mills theory, but we demonstrate that supersymmetry is not essential. As a proof of concept, we consider the simplest example of a charge-charge correlation at one loop (leading order). We compute the correlation function of four electromagnetic currents and explain in detail the steps needed to extract the event shape from it. The result is compared to the standard amplitude calculation. The explicit four-point correlation function may also be of interest for the CFT community.
We study event shapes in N=4 SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these observables using the correlation functions of certain components of the N=4 stress-tensor supermultiplet: the half-BPS operator itself, the R-symmetry current and the stress tensor. We present master formulas for the all-order event shapes as convolutions of the Mellin amplitude defining the correlation function of the half-BPS operators, with a coupling-independent kernel determined by the choice of the observable. We find remarkably simple relations between various event shapes following from N=4 superconformal symmetry. We perform thorough checks at leading order in the weak coupling expansion and show perfect agreement with the conventional calculations based on amplitude techniques. We extend our results to strong coupling using the correlation function of half-BPS operators obtained from the AdS/CFT correspondence.
61 - Antonio Ortiz 2017
In this paper a review on event shapes at hadron colliders, mainly focused on experimental results, is presented. Measurements performed at the Tevatron and at the LHC, for the soft and hard regimes of QCD, are reviewed. The potential applications of event shapes for unveiling the origin of collective-like phenomena in small collision systems as well as for testing pQCD predictions are discussed.
The area of quality of service (QoS) in communications networks has been the target of research for already several decades with tens of thousands of published journal and conference papers. However, the practical introduction of QoS systems in commercial networks has been limited (with a preference for simple overprovisioning). Despite this dissonance, most influential QoS papers do not discuss this lack of penetration or challenge any of the common assumptions used to argue for QoS systems. So far, the few critical QoS papers have had only a minor effect on QoS research and standardization. Therefore, there is a serious risk that QoS will remain an academic research topic without significant practical relevance. To help elucidate these issues, in this work, we first perform a comprehensive review of QoS including a general overview and an analysis of both influential and critical work from the past 30 years. We examine properties such as citations, keywords, and author traits to show that QoS has passed through several distinct phases with different topics while maintaining the overall attitude towards the role and objective of QoS systems. We then discuss QoS as a social phenomenon and in the context of current networking standards. Finally, we propose a QoS scheme based on incentives that avoids some of the problems identified in critical work, and we provide simple recommendations for network operators. Overall, we hope to spark the community to take a fresh look at QoS.
The goal of domain generalization algorithms is to predict well on distributions different from those seen during training. While a myriad of domain generalization algorithms exist, inconsistencies in experimental conditions -- datasets, architectures, and model selection criteria -- render fair and realistic comparisons difficult. In this paper, we are interested in understanding how useful domain generalization algorithms are in realistic settings. As a first step, we realize that model selection is non-trivial for domain generalization tasks. Contrary to prior work, we argue that domain generalization algorithms without a model selection strategy should be regarded as incomplete. Next, we implement DomainBed, a testbed for domain generalization including seven multi-domain datasets, nine baseline algorithms, and three model selection criteria. We conduct extensive experiments using DomainBed and find that, when carefully implemented, empirical risk minimization shows state-of-the-art performance across all datasets. Looking forward, we hope that the release of DomainBed, along with contributions from fellow researchers, will streamline reproducible and rigorous research in domain generalization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا