Do you want to publish a course? Click here

From correlation functions to event shapes in QCD

65   0   0.0 ( 0 )
 Added by Dmitry Chicherin
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We present a method for calculating event shapes in QCD based on correlation functions of conserved currents. The method has been previously applied to the maximally supersymmetric Yang-Mills theory, but we demonstrate that supersymmetry is not essential. As a proof of concept, we consider the simplest example of a charge-charge correlation at one loop (leading order). We compute the correlation function of four electromagnetic currents and explain in detail the steps needed to extract the event shape from it. The result is compared to the standard amplitude calculation. The explicit four-point correlation function may also be of interest for the CFT community.



rate research

Read More

We study event shapes in N=4 SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these observables using the correlation functions of certain components of the N=4 stress-tensor supermultiplet: the half-BPS operator itself, the R-symmetry current and the stress tensor. We present master formulas for the all-order event shapes as convolutions of the Mellin amplitude defining the correlation function of the half-BPS operators, with a coupling-independent kernel determined by the choice of the observable. We find remarkably simple relations between various event shapes following from N=4 superconformal symmetry. We perform thorough checks at leading order in the weak coupling expansion and show perfect agreement with the conventional calculations based on amplitude techniques. We extend our results to strong coupling using the correlation function of half-BPS operators obtained from the AdS/CFT correspondence.
We introduce a new class of collider-type observables in conformal field theories which we call generalized event shapes. They are defined as matrix elements of light-ray operators that are sensitive to the longitudinal, or time-dependent, structure of the state produced in the collision. Generalized event shapes can be studied using both correlation functions and scattering amplitudes. They are infrared finite and smoothly transit over to the familiar event shapes. We compute them in planar ${cal N}=4$ super-Yang-Mills theory at weak and strong coupling, and study their physical properties. We show that at strong coupling both the stringy and quantum-gravitational corrections to the energy-energy correlation exhibit longitudinal broadening that manifests itself through the presence of long-time tails in the energy flux measured by the detectors.
We derive a simple formula relating the cross section for light cluster production (defined via a coalescence factor) to the two-proton correlation function measured in heavy-ion collisions. The formula generalises earlier coalescence-correlation relations found by Scheibl & Heinz and by Mrowczynski for Gaussian source models. It motivates joint experimental analyses of Hanbury Brown-Twiss (HBT) and cluster yield measurements in existing and future data sets.
213 - S. Bethke , S. Kluth , C. Pahl 2010
Event Shape Data from $e^+e^-$ annihilation into hadrons collected by the JADE experiment at centre-of-mass energies between 14 GeV and 44 GeV are used to determine the strong coupling $alpha_S$. QCD predictions complete to next-to-next-to-leading order (NNLO), alternatively combined with resummed next-to-leading-log-approximation (NNLO+NLLA) calculations, are used. The combined value from six different event shape observables at the six JADE centre-of-mass energies using the NNLO calculations is $alpha_S(M_Z)$= 0.1210 +/- 0.0007(stat.) +/- 0.0021(expt.) +/- 0.0044(had.) +/- 0.0036(theo.) and with the NNLO+NLLA calculations the combined value is $alpha_S$= 0.1172 +/- 0.0006(stat.) +/- 0.0020(expt.) +/- 0.0035(had.) +/- 0.0030(theo.) . The stability of the NNLO and NNLO+NLLA results with respect to missing higher order contributions, studied by variations of the renormalisation scale, is improved compared to previous results obtained with NLO+NLLA or with NLO predictions only. The observed energy dependence of $alpha_S$ agrees with the QCD prediction of asymptotic freedom and excludes absence of running with 99% confidence level.
Single state saturation of the temporal correlation function is a key condition to extract physical observables such as energies and matrix elements of hadrons from lattice QCD simulations. A method commonly employed to check the saturation is to seek for a plateau of the observables for large Euclidean time. Identifying the plateau in the cases having nearby states, however, is non-trivial and one may even be misled by a fake plateau. Such a situation takes place typically for the system with two or more baryons. In this study, we demonstrate explicitly the danger from a possible fake plateau in the temporal correlation functions mainly for two baryons ($XiXi$ and $NN$), and three and four baryons ($^3{rm He}$ and $^4{rm He})$ as well, employing (2+1)-flavor lattice QCD at $m_{pi}=0.51$ GeV on four lattice volumes with $L=$ 2.9, 3.6, 4.3 and 5.8 fm. Caution is given for drawing conclusion on the bound $NN$, $3N$ and $4N$ systems only based on the temporal correlation functions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا