Do you want to publish a course? Click here

Quantum theory of plasmon polaritons in chains of metallic nanoparticles: From near- to far-field coupling regime

120   0   0.0 ( 0 )
 Added by Guillaume Weick
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop a quantum theory of plasmon polaritons in chains of metallic nanoparticles, describing both near- and far-field interparticle distances, by including plasmon-photon Umklapp processes. Taking into account the retardation effects of the long-range dipole-dipole interaction between the nanoparticles, which are induced by the coupling of the plasmonic degrees of freedom to the photonic continuum, we reveal the polaritonic nature of the normal modes of the system. We compute the dispersion relation and radiative linewidth, as well as the group velocities of the eigenmodes, and compare our numerical results to classical electrodynamic calculations within the point-dipole approximation. Interestingly, the group velocities of the polaritonic excitations present an almost periodic sign change and are found to be highly tunable by modifying the spacing between the nanoparticles. We show that, away from the intersection of the plasmonic eigenfrequencies with the free photon dispersion, an analytical perturbative treatment of the light-matter interaction is in excellent agreement with our fully retarded numerical calculations. We further study quantitatively the hybridization of light and matter excitations, through an analysis of Hopfields coefficients. Finally, we consider the limit of infinitely spaced nanoparticles and discuss some recent results on single nanoparticles that can be found in the literature.



rate research

Read More

Crystals of plasmonic metal nanoparticles have intriguing optical properties. They reach the regimes of ultrastrong and deep strong light-matter coupling, where the photonic states need to be included in the simulation of material properties. We propose a quantum description of the plasmon polaritons in supercrystals that starts from the dipole and quadrupole excitations of the nanoparticle building blocks and their coupling to photons. Our model excellently reproduces results of finite difference time domain simulations. It provides detailed insight into the emergence of the polariton states. Using the example of a face centered cubic crystals we show that the dipole and quadrupole states mix in many high symmetry directions of the Brilouin zone. A proper description of the plasmon and plasmon-polariton band structure is only possible when including the quadrupole-derived states. Our model leads to an expression of the reduced coupling strength in nanoparticle supercrystals that we show to enter the deep strong coupling regime for metal fill fractions above $0.8$. In addition to the plasmon-polariton energies we analyse the relative contributions of the dipole, quadrupole, and photonic states to their eigenfunctions and are able to demonstrate the decoupling of light in the deep strong coupling regime. Our results pave the way for a better understanding of the quantum properties of metallic nanoparticle supercrystals in the ultrastrong and deep-strong coupling regime.
We report on the strong coupling between inorganic quantum well excitons and surface plasmons. For that purpose a corrugated silver film was deposited on the top of a heterostructure consisting of GaAs/GaAlAs quantum wells. The formation of plasmon/heavy-hole exciton/light-hole exciton mixed states is demonstrated with reflectometry experiments. The interaction energies amount to 21 meV for the plasmon/light-hole exciton and 22 meV for the plasmon/heavy-hole exciton. Some particularities of the plasmon-exciton coupling were also discussed and qualitatively related to the plasmon polarization.
309 - B. X. Wang , C. Y. Zhao 2019
We investigate the topological plasmon polaritons (TPPs) in one-dimensional dimerized doped silicon nanoparticle chains, as an analogy of the topological edge states in the Su-Schrieffer-Heeger (SSH) model. The photonic band structures are analytically calculated by taking all near-field and far-field dipole-dipole interactions into account. For longitudinal modes, it is demonstrated that the band topology can be well characterized by the complex Zak phase irrespective of the lattice constant and doping concentration. By numerically solving the eigenmodes of a finite system, it is found that a dimerized chain with a nonzero complex Zak phase supports nontrivial topological eigenmodes localized over both edges. Moreover, by changing the doping concentration of Si, it is possible to tune the resonance frequency of the TPPs from far-infrared to near-infrared, and the localization length of the edge modes are also modulated accordingly. Since these TPPs are highly protected modes that can achieve a strong confinement of electromagnetic waves and are also immune to impurities and disorder, they can provide a potentially tunable tool for robust and enhanced light-matter interactions light-matter interaction in the infrared spectrum.
354 - Lulu Ye , Weidong Zhang , Aiqin Hu 2021
Plasmon decay via the surface or interface is a critical process for practical energy conversion and plasmonic catalysis. However, the relationship between plasmon damping and the coupling between the plasmon and 2D materials is still unclear. The spectral splitting due to plasmon-exciton interaction impedes the conventional single-particle method to evaluate the plasmon damping rate by the spectral linewidth directly. Here, we investigated the interaction between a single gold nanorod (GNR) and 2D materials using the single-particle spectroscopy method assisted with in situ nanomanipulation technique by comparing scattering intensity and linewidth together. Our approach allows us to indisputably identify that the plasmon-exciton coupling in the GNR-WSe2 hybrid would induce plasmon damping. We can also isolate the contribution between the charge transfer channel and resonant energy transfer channel for the plasmon decay in the GNR-graphene hybrid by comparing that with thin hBN layers as an intermediate medium to block the charge transfer. We find out that the contact layer between the GNR and 2D materials contributes most of the interfacial plasmon damping. These findings contribute to a deep understanding of interfacial excitonic effects on the plasmon and 2D materials hybrid.
348 - Congcong Li , Peng Shi , Luping Du 2020
Optical spin angular momenta in a confined electromagnetic field exhibit remarkable difference with their free space counterparts, in particular, the optical transverse spin that is locked with the energy propagating direction lays the foundation for many intriguing physical effects such as unidirectional transportation, quantum spin Hall effect, photonic Skyrmion, etc. In order to investigate the underlying physics behind the spin-orbit interactions as well as to develop the optical spin-based applications, it is crucial to uncover the spin texture in a confined field, yet it faces challenge due to their chiral and near-field vectorial features. Here, we propose a scanning imaging technique which can map the near-field distributions of the optical spin angular momenta with an achiral dielectric nanosphere. The spin angular momentum component normal to the interface can be uncovered experimentally by employing the proposed scanning imaging technique and the three-dimensional spin vector can be reconstructed theoretically with the experimental results. The experiment is demonstrated on the example of surface plasmon polaritons excited by various vector vortex beams under a tight-focusing configuration, where the spin-orbit interaction emerges clearly. The proposed method, which can be utilized to reconstruct the photonic Skyrmion and other photonic topological structures, is straightforward and of high precision, and hence it is expected to be valuable for the study of near-field spin optics and topological photonics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا