No Arabic abstract
Optical spin angular momenta in a confined electromagnetic field exhibit remarkable difference with their free space counterparts, in particular, the optical transverse spin that is locked with the energy propagating direction lays the foundation for many intriguing physical effects such as unidirectional transportation, quantum spin Hall effect, photonic Skyrmion, etc. In order to investigate the underlying physics behind the spin-orbit interactions as well as to develop the optical spin-based applications, it is crucial to uncover the spin texture in a confined field, yet it faces challenge due to their chiral and near-field vectorial features. Here, we propose a scanning imaging technique which can map the near-field distributions of the optical spin angular momenta with an achiral dielectric nanosphere. The spin angular momentum component normal to the interface can be uncovered experimentally by employing the proposed scanning imaging technique and the three-dimensional spin vector can be reconstructed theoretically with the experimental results. The experiment is demonstrated on the example of surface plasmon polaritons excited by various vector vortex beams under a tight-focusing configuration, where the spin-orbit interaction emerges clearly. The proposed method, which can be utilized to reconstruct the photonic Skyrmion and other photonic topological structures, is straightforward and of high precision, and hence it is expected to be valuable for the study of near-field spin optics and topological photonics.
Controlling the directionality of surface plasmon polaritons (SPPs) has been widely studied, while the direction of SPPs was always switched by orthogonal polarizations in the reported methods. Here, we present a scheme to control the directionality of SPPs by arbitrary spin polarizations. Extremely, the device can split two quite adjacent polarization components to two opposite directions. The versatility of the presented design scheme can offer opportunities for polarization sensing, polarization splitting and polarization-controlled plasmonic devices.
We have observed laser-like emission of surface plasmon polaritons (SPPs) decoupled to the glass prism in an attenuated total reflection setup. SPPs were excited by optically pumped molecules in a polymeric film deposited on the top of the silver film. Stimulated emission was characterized by a distinct threshold in the input-output dependence and narrowing of the emission spectrum. The observed stimulated emission and corresponding to it compensation of the metallic absorption loss by gain enables many applications of metamaterials and nanoplasmonic devices.
We propose a scheme to obtain a low-loss propagation of Airy surface plasmon polaritons (SPPs) along the interface between a dielectric and a negative-index metamaterial (NIMM). We show that, by using the transverse-magnetic mode and the related destructive interference effect between electric and magnetic absorption responses, the propagation loss of the Airy SPPs can be largely suppressed when the optical frequency is close to the lossless point of the NIMM. As a result, the Airy SPPs obtained in our scheme can propagate more than 6-time long distance than that in conventional dielectric-metal interfaces.
Transition metal dichalcogenide (TMD) monolayers are direct bandgap semiconductors that feature tightly bound excitons, strong spin-orbit coupling, and spin-valley degrees of freedom. Depending on the spin configuration of the electron-hole pairs, intra-valley excitons of TMD monolayers can be either optically bright or dark. Dark excitons involve nominally spin-forbidden optical transitions with zero in-plane transition dipole moment, making their detection with conventional far-field optical techniques challenging. Here, we introduce a new method for probing the optical properties of two-dimensional (2D) materials via near-field coupling to surface plasmon polaritons (SPPs), which selectively enhances optical transitions with dipole moments normal to the 2D plane. We utilize this method to directly detect dark excitons in monolayer TMDs. When a WSe2 monolayer is placed on top of a single-crystal silver film, its emission into near-field-coupled SPPs displays new spectral features whose energies and dipole orientations are consistent with dark neutral and charged excitons. The SPP-based near-field spectroscopy significantly enhances experimental capabilities for probing and manipulating exciton dynamics of atomically thin materials.
We develop a quantum theory of plasmon polaritons in chains of metallic nanoparticles, describing both near- and far-field interparticle distances, by including plasmon-photon Umklapp processes. Taking into account the retardation effects of the long-range dipole-dipole interaction between the nanoparticles, which are induced by the coupling of the plasmonic degrees of freedom to the photonic continuum, we reveal the polaritonic nature of the normal modes of the system. We compute the dispersion relation and radiative linewidth, as well as the group velocities of the eigenmodes, and compare our numerical results to classical electrodynamic calculations within the point-dipole approximation. Interestingly, the group velocities of the polaritonic excitations present an almost periodic sign change and are found to be highly tunable by modifying the spacing between the nanoparticles. We show that, away from the intersection of the plasmonic eigenfrequencies with the free photon dispersion, an analytical perturbative treatment of the light-matter interaction is in excellent agreement with our fully retarded numerical calculations. We further study quantitatively the hybridization of light and matter excitations, through an analysis of Hopfields coefficients. Finally, we consider the limit of infinitely spaced nanoparticles and discuss some recent results on single nanoparticles that can be found in the literature.