Do you want to publish a course? Click here

A Spectrally Efficient Linear Polarization Coding Scheme for Fiber Nonlinearity Compensation in CO-OFDM Systems

127   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a linear polarization coding scheme (LPC) combined with the phase conjugated twin signals (PCTS) technique, referred to as LPC-PCTS, for fiber nonlinearity mitigation in coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. The LPC linearly combines the data symbols on the adjacent subcarriers of the OFDM symbol, one at full amplitude and the other at half amplitude. The linearly coded data is then transmitted as phase conjugate pairs on the same subcarriers of the two OFDM symbols on the two orthogonal polarizations. The nonlinear distortions added to these subcarriers are essentially anti-correlated, since they carry phase conjugate pairs of data. At the receiver, the coherent superposition of the information symbols received on these pairs of subcarriers eventually leads to the cancellation of the nonlinear distortions. We conducted numerical simulation of a single channel 200 Gb/s CO-OFDM system employing the LPCPCTS technique. The results show that a Q-factor improvement of 2.3 dB and 1.7 dB with and without the dispersion symmetry, respectively, when compared to the recently proposed phase conjugated subcarrier coding (PCSC) technique, at an average launch power of 3 dBm. In addition, our proposed LPCPCTS technique shows a significant performance improvement when compared to the 16-quadrature amplitude modulation (QAM) with phase conjugated twin waves (PCTW) scheme, at the same spectral efficiency, for an uncompensated transmission distance of 2800 km.



rate research

Read More

In this paper, the performance of adaptive turbo equalization for nonlinearity compensation (NLC) is investigated. A turbo equalization scheme is proposed where a recursive least-squares (RLS) algorithm is used as an adaptive channel estimator to track the time-varying intersymbol interference (ISI) coefficients associated with inter-channel nonlinear interference (NLI) model. The estimated channel coefficients are used by a MIMO 2x2 soft-input soft-output (SISO) linear minimum mean square error (LMMSE) equalizer to compensate for the time-varying ISI. The SISO LMMSE equalizer and the SISO forward error correction (FEC) decoder exchange extrinsic information in every turbo iteration, allowing the receiver to improve the performance of the channel estimation and the equalization, achieving lower bit-error-rate (BER) values. The proposed scheme is investigated for polarization multiplexed 64QAM and 256QAM, although it applies to any proper modulation format. Extensive numerical results are presented. It is shown that the scheme allows up to 0.7 dB extra gain in effectively received signal-to-noise ratio (SNR) and up to 0.2 bits/symbol/pol in generalized mutual information (GMI), on top of the gain provided by single-channel digital backpropagation.
A perturbation-based nonlinear compensation scheme assisted by a feedback from the forward error correction (FEC) decoder is numerically and experimentally investigated. It is shown by numerical simulations and transmission experiments that a feedback from the FEC decoder enables improved compensation performance, allowing the receiver to operate very close to the full data-aided performance bounds. The experimental analysis considers the dispersion uncompensated transmission of a 5 x 32 GBd WDM system with DP-16QAM and DP-64QAM after 4200 km and 1120 km, respectively. The experimental results show that the proposed scheme outperforms single-channel digital backpropagation. A perturbation-based nonlinear compensation scheme assisted by a feedback from the forward error correction (FEC) decoder is numerically and experimentally investigated. It is shown by numerical simulations and transmission experiments that a feedback from the FEC decoder enables improved compensation performance, allowing the receiver to operate very close to the full data-aided performance bounds. The experimental analysis considers the dispersion uncompensated transmission of a 5 x 32 GBd WDM system with DP-16QAM and DP-64QAM after 4200 km and 1120 km, respectively. The experimental results show that the proposed scheme outperforms single-channel digital backpropagation.
We propose an algorithm for carrying out joint frame and frequency synchronization in reduced-guard-interval coherent optical orthogonal frequency division multiplexing (RGI-CO-OFDM) systems. The synchronization is achieved by using the same training symbols (TS) employed for training-aided channel estimation (TA-CE), thereby avoiding additional training overhead. The proposed algorithm is designed for polarization division multiplexing (PDM) RGI-CO-OFDM systems that use the Alamouti-type polarization-time coding for TA-CE. Due to their optimal TA-CE performance, Golay complementary sequences have been used as the TS in the proposed algorithm. The frame synchronization is accomplished by exploiting the cross-correlation between the received TS from the two orthogonal polarizations. The arrangement of the TS is also used to estimate the carrier frequency offset. Simulation results of a PDM RGI-CO-OFDM system operating at 238.1 Gb/s data rate (197.6-Gb/s after coding), with a total overhead of 9.2% (31.6% after coding), show that the proposed scheme has accurate synchronization, and is robust to linear fiber impairments.
154 - Amir Leshem , Michal Yemini 2017
We describe a low complexity method for time domain compensation of phase noise in OFDM systems. We extend existing methods in several respects. First we suggest using the Karhunen-Lo{e}ve representation of the phase noise process to estimate the phase noise. We then derive an improved datadirected choice of basis elements for LS phase noise estimation and present its total least square counterpart problem. The proposed method helps overcome one of the major weaknesses of OFDM systems. We also generalize the time domain phase noise compensation to the multiuser MIMO context. Finally we present simulation results using both simulated and measured phased noise. We quantify the tracking performance in the presence of residual carrier offset.
Optical communication systems represent the backbone of modern communication networks. Since their deployment, different fiber technologies have been used to deal with optical fiber impairments such as dispersion-shifted fibers and dispersion-compensation fibers. In recent years, thanks to the introduction of coherent detection based systems, fiber impairments can be mitigated using digital signal processing (DSP) algorithms. Coherent systems are used in the current 100 Gbps wavelength-division multiplexing (WDM) standard technology. They allow the increase of spectral efficiency by using multi-level modulation formats, and are combined with DSP techniques to combat the linear fiber distortions. In addition to linear impairments, the next generation 400 Gbps/1 Tbps WDM systems are also more affected by the fiber nonlinearity due to the Kerr effect. At high input power, the fiber nonlinear effects become more important and their compensation is required to improve the transmission performance. Several approaches have been proposed to deal with the fiber nonlinearity. In this paper, after a brief description of the Kerr-induced nonlinear effects, a survey on the fiber nonlinearity compensation (NLC) techniques is provided. We focus on the well-known NLC techniques and discuss their performance, as well as their implementation and complexity. An extension of the inter-subcarrier nonlinear interference canceler approach is also proposed. A performance evaluation of the well-known NLC techniques and the proposed approach is provided in the context of Nyquist and super-Nyquist superchannel systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا