Do you want to publish a course? Click here

Phase Noise Compensation for OFDM Systems

155   0   0.0 ( 0 )
 Added by Michal Yemini
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We describe a low complexity method for time domain compensation of phase noise in OFDM systems. We extend existing methods in several respects. First we suggest using the Karhunen-Lo{e}ve representation of the phase noise process to estimate the phase noise. We then derive an improved datadirected choice of basis elements for LS phase noise estimation and present its total least square counterpart problem. The proposed method helps overcome one of the major weaknesses of OFDM systems. We also generalize the time domain phase noise compensation to the multiuser MIMO context. Finally we present simulation results using both simulated and measured phased noise. We quantify the tracking performance in the presence of residual carrier offset.



rate research

Read More

Physical layer security has been considered as an important security approach in wireless communications to protect legitimate transmission from passive eavesdroppers. This paper investigates the physical layer security of a wireless multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) communication system in the presence of a multiple-antenna eavesdropper. We first propose a transmit-filter-assisted secure MIMO-OFDM system which can destroy the orthogonality of eavesdroppers signals. Our proposed transmit filter can disturb the reception of eavesdropper while maintaining the quality of legitimate transmission. Then, we propose another artificial noise (AN)-assisted secure MIMO-OFDM system to further improve the security of the legitimate transmission. The time-domain AN signal is designed to disturb the reception of eavesdropper while the legitimate transmission will not be affected. Simulation results are presented to demonstrate the security performance of the proposed transmit filter design and AN-assisted scheme in the MIMO-OFDM system.
In this paper, we study how to efficiently and reliably detect active devices and estimate their channels in a multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) based grant-free non-orthogonal multiple access (NOMA) system to enable massive machine-type communications (mMTC). First, by exploiting the correlation of the channel frequency responses in narrow-band mMTC, we propose a block-wise linear channel model. Specifically, the continuous OFDM subcarriers in the narrow-band are divided into several sub-blocks and a linear function with only two variables (mean and slope) is used to approximate the frequency-selective channel in each sub-block. This significantly reduces the number of variables to be determined in channel estimation and the sub-block number can be adjusted to reliably compensate the channel frequency-selectivity. Second, we formulate the joint active device detection and channel estimation in the block-wise linear system as a Bayesian inference problem. By exploiting the block-sparsity of the channel matrix, we develop an efficient turbo message passing (Turbo-MP) algorithm to resolve the Bayesian inference problem with near-linear complexity. We further incorporate machine learning approaches into Turbo-MP to learn unknown prior parameters. Numerical results demonstrate the superior performance of the proposed algorithm over state-of-the-art algorithms.
We present a comparative study of the influence of dispersion induced phase noise for CO-OFDM systems using Tx channel multiplexing and Rx matched filter (analogue hardware based); and FFT multiplexing/IFFT demultiplexing techniques (software based). An RF carrier pilot tone is used to mitigate the phase noise influence. From the analysis, it appears that the phase noise influence for the two OFDM implementations is very similar. The software based system provides a method for a rigorous evaluation of the phase noise variance caused by Common Phase Error (CPE) and Inter-Carrier Interference (ICI) and this, in turns, leads to a BER specification. Numerical results focus on a CO-OFDM system with 1GS/s QPSK channel modulation. Worst case BER results are evaluated and compared to the BER of a QPSK system with the same capacity as the OFDM implementation. Results are evaluated as a function of transmission distance, and for the QPSK system the influence of equalization enhanced phase noise (EEPN) is included. For both types of systems, the phase noise variance increases significantly with increasing transmission distance. An important and novel observation is that the two types of systems have very closely the same BER as a function of transmission distance for the same capacity. For the high capacity QPSK implementation, the increase in BER is due to EEPN, whereas for the OFDM approach it is due to the dispersion caused walk-off of the RF pilot tone relative to the OFDM signal channels. For a total capacity of 400 Gb/s, the transmission distance to have the BER < 10-4 is less than 277 km.
We present a study of the influence of dispersion induced phase noise for CO-OFDM systems using FFT multiplexing/IFFT demultiplexing techniques (software based). The software based system provides a method for a rigorous evaluation of the phase noise variance caused by Common Phase Error (CPE) and Inter-Carrier Interference (ICI) including - for the first time to our knowledge - in explicit form the effect of equalization enhanced phase noise (EEPN). This, in turns, leads to an analytic BER specification. Numerical results focus on a CO-OFDM system with 10-25 GS/s QPSK channel modulation. A worst case constellation configuration is identified for the phase noise influence and the resulting BER is compared to the BER of a conventional single channel QPSK system with the same capacity as the CO-OFDM implementation. Results are evaluated as a function of transmission distance. For both types of systems, the phase noise variance increases significantly with increasing transmission distance. For a total capacity of 400 (1000) Gbit/s, the transmission distance to have the BER < 10^-2 for the worst case CO-OFDM design is less than 800 and 460 km, respectively, whereas for a single channel QPSK system it is less than 1400 and 560 km.
In this paper we present a comparative study in order to specify the influence of equalization enhanced phase noise (EEPN) for pre- and post-compensation of chromatic dispersion in high capacity and high constellation systems. This is - to our knowledge - the first detailed study in this area for pre-compensation systems. Our main results show that the local oscillator phase noise determines the EEPN influence in post-compensation implementations whereas the transmitter laser determines the EEPN in pre-compensation implementations. As a result of significance for the implementation of practical longer-range systems it is to be emphasized that the use of chromatic dispersion equalization in the optical domain - e.g. by the use of dispersion compensation fibers - eliminates the EEPN entirely. Thus, this seems a good option for such systems operating at high constellations in the future.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا