No Arabic abstract
This paper introduces a new video-and-language dataset with human actions for multimodal logical inference, which focuses on intentional and aspectual expressions that describe dynamic human actions. The dataset consists of 200 videos, 5,554 action labels, and 1,942 action triplets of the form <subject, predicate, object> that can be translated into logical semantic representations. The dataset is expected to be useful for evaluating multimodal inference systems between videos and semantically complicated sentences including negation and quantification.
While significant advancements have been made in the generation of deepfakes using deep learning technologies, its misuse is a well-known issue now. Deepfakes can cause severe security and privacy issues as they can be used to impersonate a persons identity in a video by replacing his/her face with another persons face. Recently, a new problem of generating synthesized human voice of a person is emerging, where AI-based deep learning models can synthesize any persons voice requiring just a few seconds of audio. With the emerging threat of impersonation attacks using deepfake audios and videos, a new generation of deepfake detectors is needed to focus on both video and audio collectively. A large amount of good quality datasets is typically required to capture the real-world scenarios to develop a competent deepfake detector. Existing deepfake datasets either contain deepfake videos or audios, which are racially biased as well. Hence, there is a crucial need for creating a good video as well as an audio deepfake dataset, which can be used to detect audio and video deepfake simultaneously. To fill this gap, we propose a novel Audio-Video Deepfake dataset (FakeAVCeleb) that contains not only deepfake videos but also respective synthesized lip-synced fake audios. We generate this dataset using the current most popular deepfake generation methods. We selected real YouTube videos of celebrities with four racial backgrounds (Caucasian, Black, East Asian, and South Asian) to develop a more realistic multimodal dataset that addresses racial bias and further help develop multimodal deepfake detectors. We performed several experiments using state-of-the-art detection methods to evaluate our deepfake dataset and demonstrate the challenges and usefulness of our multimodal Audio-Video deepfake dataset.
Humans interact in rich and diverse ways with the environment. However, the representation of such behavior by artificial agents is often limited. In this work we present textit{motion concepts}, a novel multimodal representation of human actions in a household environment. A motion concept encompasses a probabilistic description of the kinematics of the action along with its contextual background, namely the location and the objects held during the performance. Furthermore, we present Online Motion Concept Learning (OMCL), a new algorithm which learns novel motion concepts from action demonstrations and recognizes previously learned motion concepts. The algorithm is evaluated on a virtual-reality household environment with the presence of a human avatar. OMCL outperforms standard motion recognition algorithms on an one-shot recognition task, attesting to its potential for sample-efficient recognition of human actions.
We present PANDA, the first gigaPixel-level humAN-centric viDeo dAtaset, for large-scale, long-term, and multi-object visual analysis. The videos in PANDA were captured by a gigapixel camera and cover real-world scenes with both wide field-of-view (~1 square kilometer area) and high-resolution details (~gigapixel-level/frame). The scenes may contain 4k head counts with over 100x scale variation. PANDA provides enriched and hierarchical ground-truth annotations, including 15,974.6k bounding boxes, 111.8k fine-grained attribute labels, 12.7k trajectories, 2.2k groups and 2.9k interactions. We benchmark the human detection and tracking tasks. Due to the vast variance of pedestrian pose, scale, occlusion and trajectory, existing approaches are challenged by both accuracy and efficiency. Given the uniqueness of PANDA with both wide FoV and high resolution, a new task of interaction-aware group detection is introduced. We design a global-to-local zoom-in framework, where global trajectories and local interactions are simultaneously encoded, yielding promising results. We believe PANDA will contribute to the community of artificial intelligence and praxeology by understanding human behaviors and interactions in large-scale real-world scenes. PANDA Website: http://www.panda-dataset.com.
Video-and-Language Inference is a recently proposed task for joint video-and-language understanding. This new task requires a model to draw inference on whether a natural language statement entails or contradicts a given video clip. In this paper, we study how to address three critical challenges for this task: judging the global correctness of the statement involved multiple semantic meanings, joint reasoning over video and subtitles, and modeling long-range relationships and complex social interactions. First, we propose an adaptive hierarchical graph network that achieves in-depth understanding of the video over complex interactions. Specifically, it performs joint reasoning over video and subtitles in three hierarchies, where the graph structure is adaptively adjusted according to the semantic structures of the statement. Secondly, we introduce semantic coherence learning to explicitly encourage the semantic coherence of the adaptive hierarchical graph network from three hierarchies. The semantic coherence learning can further improve the alignment between vision and linguistics, and the coherence across a sequence of video segments. Experimental results show that our method significantly outperforms the baseline by a large margin.
With the recent success of the pre-training technique for NLP and image-linguistic tasks, some video-linguistic pre-training works are gradually developed to improve video-text related downstream tasks. However, most of the existing multimodal models are pre-trained for understanding tasks, leading to a pretrain-finetune discrepancy for generation tasks. This paper proposes UniVL: a Unified Video and Language pre-training model for both multimodal understanding and generation. It comprises four components, including two single-modal encoders, a cross encoder, and a decoder with the Transformer backbone. Five objectives, including video-text joint, conditioned masked language model (CMLM), conditioned masked frame model (CMFM), video-text alignment, and language reconstruction, are designed to train each of the components. We further develop two pre-training strategies, stage by stage pre-training (StagedP) and enhanced video representation (EnhancedV), to make the training process of the UniVL more effective. The pre-train is carried out on a sizeable instructional video dataset HowTo100M. Experimental results demonstrate that the UniVL can learn strong video-text representation and achieves state-of-the-art results on five downstream tasks.