Do you want to publish a course? Click here

PANDA: A Gigapixel-level Human-centric Video Dataset

96   0   0.0 ( 0 )
 Added by Xueyang Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We present PANDA, the first gigaPixel-level humAN-centric viDeo dAtaset, for large-scale, long-term, and multi-object visual analysis. The videos in PANDA were captured by a gigapixel camera and cover real-world scenes with both wide field-of-view (~1 square kilometer area) and high-resolution details (~gigapixel-level/frame). The scenes may contain 4k head counts with over 100x scale variation. PANDA provides enriched and hierarchical ground-truth annotations, including 15,974.6k bounding boxes, 111.8k fine-grained attribute labels, 12.7k trajectories, 2.2k groups and 2.9k interactions. We benchmark the human detection and tracking tasks. Due to the vast variance of pedestrian pose, scale, occlusion and trajectory, existing approaches are challenged by both accuracy and efficiency. Given the uniqueness of PANDA with both wide FoV and high resolution, a new task of interaction-aware group detection is introduced. We design a global-to-local zoom-in framework, where global trajectories and local interactions are simultaneously encoded, yielding promising results. We believe PANDA will contribute to the community of artificial intelligence and praxeology by understanding human behaviors and interactions in large-scale real-world scenes. PANDA Website: http://www.panda-dataset.com.



rate research

Read More

139 - Si Liu , Zitian Wang , Yulu Gao 2021
Vision and language understanding techniques have achieved remarkable progress, but currently it is still difficult to well handle problems involving very fine-grained details. For example, when the robot is told to bring me the book in the girls left hand, most existing methods would fail if the girl holds one book respectively in her left and right hand. In this work, we introduce a new task named human-centric relation segmentation (HRS), as a fine-grained case of HOI-det. HRS aims to predict the relations between the human and surrounding entities and identify the relation-correlated human parts, which are represented as pixel-level masks. For the above exemplar case, our HRS task produces results in the form of relation triplets <girl [left hand], hold, book> and exacts segmentation masks of the book, with which the robot can easily accomplish the grabbing task. Correspondingly, we collect a new Person In Context (PIC) dataset for this new task, which contains 17,122 high-resolution images and densely annotated entity segmentation and relations, including 141 object categories, 23 relation categories and 25 semantic human parts. We also propose a Simultaneous Matching and Segmentation (SMS) framework as a solution to the HRS task. I Outputs of the three branches are fused to produce the final HRS results. Extensive experiments on PIC and V-COCO datasets show that the proposed SMS method outperforms baselines with the 36 FPS inference speed.
104 - Ran Yu , Chenyu Tian , Weihao Xia 2021
Most existing video tasks related to human focus on the segmentation of salient humans, ignoring the unspecified others in the video. Few studies have focused on segmenting and tracking all humans in a complex video, including pedestrians and humans of other states (e.g., seated, riding, or occluded). In this paper, we propose a novel framework, abbreviated as HVISNet, that segments and tracks all presented people in given videos based on a one-stage detector. To better evaluate complex scenes, we offer a new benchmark called HVIS (Human Video Instance Segmentation), which comprises 1447 human instance masks in 805 high-resolution videos in diverse scenes. Extensive experiments show that our proposed HVISNet outperforms the state-of-the-art methods in terms of accuracy at a real-time inference speed (30 FPS), especially on complex video scenes. We also notice that using the center of the bounding box to distinguish different individuals severely deteriorates the segmentation accuracy, especially in heavily occluded conditions. This common phenomenon is referred to as the ambiguous positive samples problem. To alleviate this problem, we propose a mechanism named Inner Center Sampling to improve the accuracy of instance segmentation. Such a plug-and-play inner center sampling mechanism can be incorporated in any instance segmentation models based on a one-stage detector to improve the performance. In particular, it gains 4.1 mAP improvement on the state-of-the-art method in the case of occluded humans. Code and data are available at https://github.com/IIGROUP/HVISNet.
Recently, there has been a growing interest in wearable sensors which provides new research perspectives for 360 {deg} video analysis. However, the lack of 360 {deg} datasets in literature hinders the research in this field. To bridge this gap, in this paper we propose a novel Egocentric (first-person) 360{deg} Kinetic human activity video dataset (EgoK360). The EgoK360 dataset contains annotations of human activity with different sub-actions, e.g., activity Ping-Pong with four sub-actions which are pickup-ball, hit, bounce-ball and serve. To the best of our knowledge, EgoK360 is the first dataset in the domain of first-person activity recognition with a 360{deg} environmental setup, which will facilitate the egocentric 360 {deg} video understanding. We provide experimental results and comprehensive analysis of variants of the two-stream network for 360 egocentric activity recognition. The EgoK360 dataset can be downloaded from https://egok360.github.io/.
Along with the development of modern smart cities, human-centric video analysis has been encountering the challenge of analyzing diverse and complex events in real scenes. A complex event relates to dense crowds, anomalous, or collective behaviors. However, limited by the scale of existing video datasets, few human analysis approaches have reported their performance on such complex events. To this end, we present a new large-scale dataset, named Human-in-Events or HiEve (Human-centric video analysis in complex Events), for the understanding of human motions, poses, and actions in a variety of realistic events, especially in crowd and complex events. It contains a record number of poses (>1M), the largest number of action instances (>56k) under complex events, as well as one of the largest numbers of trajectories lasting for longer time (with an average trajectory length of >480 frames). Based on this dataset, we present an enhanced pose estimation baseline by utilizing the potential of action information to guide the learning of more powerful 2D pose features. We demonstrate that the proposed method is able to boost the performance of existing pose estimation pipelines on our HiEve dataset. Furthermore, we conduct extensive experiments to benchmark recent video analysis approaches together with our baseline methods, demonstrating that HiEve is a challenging dataset for human-centric video analysis. We expect that the dataset will advance the development of cutting-edge techniques in human-centric analysis and the understanding of complex events. The dataset is available at http://humaninevents.org
We propose an effective two-stage approach to tackle the problem of language-based Human-centric Spatio-Temporal Video Grounding (HC-STVG) task. In the first stage, we propose an Augmented 2D Temporal Adjacent Network (Augmented 2D-TAN) to temporally ground the target moment corresponding to the given description. Primarily, we improve the original 2D-TAN from two aspects: First, a temporal context-aware Bi-LSTM Aggregation Module is developed to aggregate clip-level representations, replacing the original max-pooling. Second, we propose to employ Random Concatenation Augmentation (RCA) mechanism during the training phase. In the second stage, we use pretrained MDETR model to generate per-frame bounding boxes via language query, and design a set of hand-crafted rules to select the best matching bounding box outputted by MDETR for each frame within the grounded moment.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا