No Arabic abstract
When trained at sufficient scale, auto-regressive language models exhibit the notable ability to learn a new language task after being prompted with just a few examples. Here, we present a simple, yet effective, approach for transferring this few-shot learning ability to a multimodal setting (vision and language). Using aligned image and caption data, we train a vision encoder to represent each image as a sequence of continuous embeddings, such that a pre-trained, frozen language model prompted with this prefix generates the appropriate caption. The resulting system is a multimodal few-shot learner, with the surprising ability to learn a variety of new tasks when conditioned on examples, represented as a sequence of multiple interleaved image and text embeddings. We demonstrate that it can rapidly learn words for new objects and novel visual categories, do visual question-answering with only a handful of examples, and make use of outside knowledge, by measuring a single model on a variety of established and new benchmarks.
Pretrained language models (LMs) perform well on many tasks even when learning from a few examples, but prior work uses many held-out examples to tune various aspects of learning, such as hyperparameters, training objectives, and natural language templates (prompts). Here, we evaluate the few-shot ability of LMs when such held-out examples are unavailable, a setting we call true few-shot learning. We test two model selection criteria, cross-validation and minimum description length, for choosing LM prompts and hyperparameters in the true few-shot setting. On average, both marginally outperform random selection and greatly underperform selection based on held-out examples. Moreover, selection criteria often prefer models that perform significantly worse than randomly-selected ones. We find similar results even when taking into account our uncertainty in a models true performance during selection, as well as when varying the amount of computation and number of examples used for selection. Overall, our findings suggest that prior work significantly overestimated the true few-shot ability of LMs given the difficulty of few-shot model selection.
This paper studies zero-shot cross-lingual transfer of vision-language models. Specifically, we focus on multilingual text-to-video search and propose a Transformer-based model that learns contextualized multilingual multimodal embeddings. Under a zero-shot setting, we empirically demonstrate that performance degrades significantly when we query the multilingual text-video model with non-English sentences. To address this problem, we introduce a multilingual multimodal pre-training strategy, and collect a new multilingual instructional video dataset (MultiHowTo100M) for pre-training. Experiments on VTT show that our method significantly improves video search in non-English languages without additional annotations. Furthermore, when multilingual annotations are available, our method outperforms recent baselines by a large margin in multilingual text-to-video search on VTT and VATEX; as well as in multilingual text-to-image search on Multi30K. Our model and Multi-HowTo100M is available at http://github.com/berniebear/Multi-HT100M.
Few-shot learning (FSL) aims to train a strong classifier using limited labeled examples. Many existing works take the meta-learning approach, sampling few-shot tasks in turn and optimizing the few-shot learners performance on classifying the query examples. In this paper, we point out two potential weaknesses of this approach. First, the sampled query examples may not provide sufficient supervision for the few-shot learner. Second, the effectiveness of meta-learning diminishes sharply with increasing shots (i.e., the number of training examples per class). To resolve these issues, we propose a novel objective to directly train the few-shot learner to perform like a strong classifier. Concretely, we associate each sampled few-shot task with a strong classifier, which is learned with ample labeled examples. The strong classifier has a better generalization ability and we use it to supervise the few-shot learner. We present an efficient way to construct the strong classifier, making our proposed objective an easily plug-and-play term to existing meta-learning based FSL methods. We validate our approach in combinations with many representative meta-learning methods. On several benchmark datasets including miniImageNet and tiredImageNet, our approach leads to a notable improvement across a variety of tasks. More importantly, with our approach, meta-learning based FSL methods can consistently outperform non-meta-learning based ones, even in a many-shot setting, greatly strengthening their applicability.
Few-shot class-incremental learning (FSCIL) aims to design machine learning algorithms that can continually learn new concepts from a few data points, without forgetting knowledge of old classes. The difficulty lies in that limited data from new classes not only lead to significant overfitting issues but also exacerbate the notorious catastrophic forgetting problems. Moreover, as training data come in sequence in FSCIL, the learned classifier can only provide discriminative information in individual sessions, while FSCIL requires all classes to be involved for evaluation. In this paper, we address the FSCIL problem from two aspects. First, we adopt a simple but effective decoupled learning strategy of representations and classifiers that only the classifiers are updated in each incremental session, which avoids knowledge forgetting in the representations. By doing so, we demonstrate that a pre-trained backbone plus a non-parametric class mean classifier can beat state-of-the-art methods. Second, to make the classifiers learned on individual sessions applicable to all classes, we propose a Continually Evolved Classifier (CEC) that employs a graph model to propagate context information between classifiers for adaptation. To enable the learning of CEC, we design a pseudo incremental learning paradigm that episodically constructs a pseudo incremental learning task to optimize the graph parameters by sampling data from the base dataset. Experiments on three popular benchmark datasets, including CIFAR100, miniImageNet, and Caltech-USCD Birds-200-2011 (CUB200), show that our method significantly outperforms the baselines and sets new state-of-the-art results with remarkable advantages.
Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3s few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.